

COURSE CARD

1. Basic information

Course name in English:	Technology of bioelectrochemical systems for sustainability		
Course name in Polish:	Technologia układów bioelektrochemicznych zrównoważonego rozwoju	dla	
Number of hours:	30		
Type of course:	Elective course		
Form of course:	mixed forms (combination of lecture, seminar laboratory)	and	
Code of course:	W03INC-SD0101W / CIQ100396W		
Course leader:	DR INŻ. GRZEGORZ PASTERNAK		
Faculty of the course leader:	W3 Faculty of Chemistry		
Email address of the course leader:	GRZEGORZ.PASTERNAK@PWR.EDU.PL		
Scientific discipline(s) assigned to the course (doctoral students representing the marked disciplines can participate in the course):	Architecture and urban planning	\boxtimes	
	Automation, electronic, and electrical engineering	\boxtimes	
	Information and communication technology		
	Biomedical engineering	\boxtimes	
	Chemical engineering	\boxtimes	
	Civil engineering and transport	\boxtimes	
	Mechanical engineering	\boxtimes	
	Environmental engineering, mining, and energy	\boxtimes	
	Mathematics		
	Chemical sciences	\boxtimes	
	Physical sciences	\boxtimes	
	Management and quality studies		

2. Objectives

Familiarising students with principles of bioelectrochemistry and introducing to wide range of bioelectrochemical methods applications.

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Topic	Number of	Form of classes
		hours	
1	Introduction to bioelectrochemical systems technology	2	lecture
2	Introduction to microbial growth and metabolism used	4	lecture
	in power generation		
3	Principles of Microbial Fuel Cell (MFC) technology	2	lecture
4	R&D aspects of MFCs (methods, materials	2	lecture
	development)		

5	Designs and applications for electricity production	2	lecture
6	Sediment MFCs and electrochemical snorkels		lecture
7	Microbial Electrolysis Cells	2	lecture
8	Microbial Desalination Cells	2	lecture
9	Bioelectrosynthesis	2	lecture
10	Biosensors based on bioelectrochemical systems	2	lecture
11	Biofuel cell sensors	2	lecture
12	Trends, concepts and inspirations for implementing	2	lecture
	bioelectrochemical reactors		
13	Crediting with grade	4	seminar

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

Knowledge in chemistry. Basic knowledge in biology and physics.

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access	\boxtimes
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes
	formulate and innovatively solve complex problems or perform research tasks, in particular:	
	- define the purpose and subject of scientific research, formulate a research	
	hypothesis,	
	- develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	

SzD_U3	communicate on specialised topics to the extent that they enable an active	\boxtimes
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	
SzD_U6	be able to speak a foreign language at B2 level of the Common European	П
_	Framework of Reference for Languages to a level that enables them to participate	_
	in the international scientific and professional environment;	
6 5 117		
SzD_U7	plan and implement an individual or collective research or creative activity,	ш
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
_	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Presentation

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Interactive presentation, literature studies, discussion

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

PRIMARY LITERATURE:

- [1] Microbial Fuel Cells, Bruce E. Logan, 2007, DOI:10.1002/9780470258590
- [2] Microbial Electrochemical and Fuel Cells, Fundamentals and Applications, Keith Scott and Eileen Hao Yu, 2016, DOI 10.1016/C2014-0-01767-4

SECONDARY LITERATURE:

[1] Prescott's Microbiology, Joanne Willey and Linda Sherwood and Christopher J. Woolverton, 10th edition, 2017. (also earlier)

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

Dr inż. Grzegorz Pasternak, grzgorz.pasternak@pwr.edu.pl