

COURSE CARD

1. Basic information

Course name in English:	Quality management in an accredited testing lab in pra	ctice
Course name in Polish:	Zarządzanie jakością w akredytowanym laborato badawczym w praktyce	orium
Number of hours:	30	
Type of course:	Elective course	
Form of course:	mixed forms (combination of lecture, seminar laboratory)	and
Code of course:	W03INC-SD0111W / CIQ100406W	
Course leader:	Dr inż. Małgorzata Mironiuk	
Faculty of the course leader:	W3 Faculty of Chemistry	
Email address of the course leader:	malgorzata.mironiuk@pwr.edu.pl	
Scientific discipline(s) assigned to the course (doctoral students representing the marked	Architecture and urban planning	
	Automation, electronic, and electrical engineering	
	Information and communication technology	
disciplines can participate in the course):	Biomedical engineering	
33.33).	Chemical engineering	\boxtimes
	Civil engineering and transport	
	Mechanical engineering	
	Environmental engineering, mining, and energy	
	Mathematics	
	Chemical sciences	\boxtimes
	Physical sciences	
	Management and quality studies	

2. Objectives

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Topic	Number of	Form of classes
		hours	
1	Laboratory management system based on ISO/IEC	2	lecture
	17025: requirements for testing and calibration		
	laboratories with respect to the requirements for the		
	management and technical activities		
2	Validation of test methods and assurance of the quality	2	lecture
	of measurements: validation rules; developing a plan		
	and scope of validation, characterization of testing		

	method;		
3	Preparation of samples for analysis: preparation samples for analysis, preparation the analytical sample; dry and wet digestion techniques; digestion samples by microwave mineralization; effect of sample preparation on the results of the analysis	2	lecture
4	Management systems: Principles of implementing management systems, creating documentation, keeping records.	2	seminar
5	Confirmation of validity of test results. Proficiency tests and interlaboratory comparisons. Measurement traceability. The role of certified reference materials.	2	seminar
6	Internal audits. Corrective Action.	2	seminar
7	Risk management.	2	seminar
8	Microwave mineralization of samples. Determination of nitrogen forms by titration methods: sample preparation; check the performance of the method; quality control tests	3	laboratory
9	Quantitative analysis by ICP-OES: identification of the matrix composition; preparation of calibration standards; calibration curve; selection wavelength; spectrometer design; preparation of matrix calibration standards; quantitative analysis of the elemental composition; interference identification; quality control tests	3	laboratory
10	Determination of mercury by AAS method: basic of atomic absorption spectrometry; determination of mercury content by atomic absorption spectrometry using an amalgamation technique; checks; quality control tests	3	laboratory
11	Determination of carbon and nitrogen by elemental analysis method: principle of elemental analysis; CN elemental analyzer design; compacting the samples in the form of tablets using a tin foil; determination of the daily correction factor; quality control tests	3	laboratory
12	Preparation of documentation - analytical report for external clients in ISO 17025: performance report based on conducted proceedings - from receipt of the order to forward the tests report to the client / execution of the order of business entity	2	seminar
12	Summarizing the results, formulating conclusions. Evaluation of the course.	2	seminar

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

- [1] Basic knowledge of issues related to the management systems
- [2] Basic knowledge of analytical chemistry

[3] Basic knowledge of chemical calculations (conversions concentrations, etc.)

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	
	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access	
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	\boxtimes
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes
	formulate and innovatively solve complex problems or perform research tasks, in	
	particular:	
	- define the purpose and subject of scientific research, formulate a research	
	hypothesis, - develop research methods, techniques and tools, and use them creatively,	
	- develop research methods, techniques and tools, and use them creatively, - draw conclusions on the basis of scientific research;	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active	×
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	
SzD_U6	be able to speak a foreign language at B2 level of the Common European	
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
C-D 110	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize the development of others;	╽╙
SzD_U9	plan classes or groups of classes and implement them using modern methods and	П
320_03	tools.	╵
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	
_	, , , , , , , , , , , , , , , , , , , ,	ı —

	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

presentation, activity in workshops, preparation of a report

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

multimedia presentation, discussion, literature studies, developing written documents, own work, laboratory work, conducting research, group work, workshops

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

- [1] PN-EN ISO/IEC 17025
- [2] Polish Centre for Accreditation Documents: DA-01, TO-02, DA-05, DA-06, DA-08, DAB-07 / available on the internet /
- [3] Bulska Ewa, Metrologia Chemiczna Sztuka Prowadzenia Pomiarów, Publishing Malamute, Warsaw 2008
- [4] Information bulletins POLLAB
- [5] Scientific and technical journals: Accreditation and Quality Assurance; Acta Analytica; Chemical industry, etc.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)