

COURSE CARD

1. Basic information

Course name in English:	Recent research trends in Biomedical Engineering	
Course name in Polish:	Najnowsze kierunki badań w inżynierii biomedycznej	
Number of hours:	30	
Type of course:	Recent research trends in discipline	
Form of course:	lecture	
Code of course:	W11IBI- SD0136W / IBQ100436W	
Course leader:	Prof Dr hab. Eng. MD Halina Podbielska	
Faculty of the course leader:	W11 Faculty of Fundamental Problems of Technology	
Email address of the course leader:	halina.podbielska@pwr.edu.pl	
Scientific discipline(s) assigned to	Architecture and urban planning	
the course (doctoral students	Automation, electronic, and electrical engineering	
representing the marked disciplines can participate in the course):	Information and communication technology	\boxtimes
	Biomedical engineering	\boxtimes
,	Chemical engineering	\boxtimes
	Civil engineering and transport	
	Mechanical engineering	\boxtimes
	Environmental engineering, mining, and energy	\boxtimes
	Mathematics	
	Chemical sciences	\boxtimes
	Physical sciences	\boxtimes
	Management and quality studies	

2. Objectives

Getting acquainted with chosen aspects of contemporary Biomedical Engineering.

Getting knowledge about fundamentals of immunology, personalized medicine, bioinformatics and medical informatics, e-medicine, biophotonics, nanobiomedicine, targeted therapies, drugs carriers and possible commercialization of Biomedical Engineering technologies.

Gaining skills in obtaining, analysis and synthesis of information of chosen methods of Biomedical Engineering and technical solutions.

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Торіс	Number of	Form of classes
		hours	

Wrocław University of Science and Technology Doctoral School

1	Career opportunities in contemporary Biomedical Engineering; e-medicine, digital health and telemedicine	2	lecture
2	Personalized prediction, prevention and medical therapies	2	lecture
3	Indirect methods of imaging the microstructural properties of the cornea	2	lecture
4	Optical coherence tomography in medicine	2	lecture
5	Trends in Bioinformatics	2	lecture
6	Fundamentals of Immunology	2	lecture
7	Neural interface technologies	2	lecture
8	Implants biofunctionalization	2	lecture
9	Nanobiomaterials	2	lecture
10	Infrared imaging as a tool of novel patient driven	2	lecture
	medicine		
11	Spectroscopic imaging for medical diagnostics	2	lecture
12	Magnetoencephalography	2	lecture
13	New trends in biomedical optical imaging techniques	2	lecture
14	Theranostics as an emerging field of nanomedicine	2	lecture
15	Drug carriers and targeted therapies	2	lecture

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

Fundamentals of Physics, Mathematics and Chemistry

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	
SzD_W5	the rules for the dissemination of scientific results, including in open access	
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	\boxtimes
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	

Wrocław University of Science and Technology

Doctoral School

SzD_U2	use knowledge from different fields of science or art to creatively identify,	
	formulate and innovatively solve complex problems or perform research tasks, in	
	particular:	
	- define the purpose and subject of scientific research, formulate a research	
	hypothesis,	
	- develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active	
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	
SzD_U6	be able to speak a foreign language at B2 level of the Common European	
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Remote test, each tutor will pass two questions in E-portal)

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Multimedia presentations

Remote quizzes, tests and elaborations Activating methods of group works, flipped class method

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

Scientific publication from PubMed database, or published in highly ranked journals, as e.g.. Scientific Reports, EPMA Journal, Nature Biomedical Engineering, Investigative Ophthalmology & Visual Science, ACS Biomaterials-Science & Engineering, Biomedical Optics Express, Acta Ophthalmologica, International Journal of Molecular Sciences

Patents databases, other reports as recommended by the Lecturer

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

Online only course with invited tutors, national and international ones The order of lectures upon availability of invited tutors