

COURSE CARD

1. Basic information

Course name in English:	Aplication of spectroscopic methods in structural cher	nistry	
Course name in Polish:	Zastosowanie metod spektroskopowych w c strukturalnej	chemii	
Number of hours:	30		
Type of course:	Elective course		
Form of course:	lecture		
Code of course:	W03NCH-SD0061W / NCQ100364W		
Course leader:	Prof. dr hab. Piotr Młynarz		
Faculty of the course leader:	W3 Faculty of Chemistry		
Email address of the course leader:	Piotr.mlynarz@pwr.edu.pl		
Scientific discipline(s) assigned to	Architecture and urban planning		
the course (doctoral students	Automation, electronic, and electrical engineering		
representing the marked	Information and communication technology		
disciplines can participate in the course):	Biomedical engineering	\boxtimes	
	Chemical engineering	\boxtimes	
	Civil engineering and transport		
	Mechanical engineering		
	Environmental engineering, mining, and energy		
	Mathematics		
	Chemical sciences	\boxtimes	
	Physical sciences	\boxtimes	
	Management and quality studies		

2. Objectives

- 1. Organic Chemistry
- 2. Inorganic Chemistry

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Торіс	Number of	Form of classes
		hours	
1	Overview of spectroscopic methods	2	lecture
2	Practical solution of structures based on spectra data	2	lecture
3	Theoretical aspects of NMR spectroscopy	2	lecture
4	One dimensional NMR data analysis	2	lecture
5	Two dimensional NMR data analysis	2	lecture
6	Special examples of NMR application	2	lecture

Wrocław University of Science and Technology Doctoral School

7	Dynamic NMR spectroscopy	2	lecture
8	NMR of metal complexes	2	lecture
9	Theoretical aspects of NMR application	2	lecture
10	Introduction to Raman spectroscopy	2	lecture
11	Aplication of group theory in spaectral data analysis	2	lecture
12	Introduction to MS spectrometry	2	lecture
13	Symmetry of the molecule in spectra data analysis	2	lecture
14	Application of group theory in analysis of spectra	2	lecture
	analysis		
15	Egzam	2	lecture

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access	
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes
	formulate and innovatively solve complex problems or perform research tasks, in particular:	
	 define the purpose and subject of scientific research, formulate a research hypothesis, 	
	- develop research methods, techniques and tools, and use them creatively,	
	 draw conclusions on the basis of scientific research; 	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	

Wrocław University of Science and Technology

Doctoral School

SzD_U3	communicate on specialised topics to the extent that they enable an active	\boxtimes
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	\boxtimes
SzD_U5	initiate debates and participate in a scientific discourse;	
SzD_U6	be able to speak a foreign language at B2 level of the Common European	X
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	\boxtimes
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Assessment of learning outcomes: pass

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Power point presentations

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

- 1. Gross Jurgrn Mass Spectrometry
- 2. Mitchell Terence N. NMR-from spectra to structures
- 3. Max Diem, Eds, Vibrational Spectroscopy for Medical Diagnosis
- 4. Friebolin, Horst, Basic one and two dimmensional NMR spectroscopy
- 5. Materiały dostarczone przez prowadzacego.
- 6. Eljcharrt Andrzej, NMR w cieczach: zarys teorii i metodologii.
- 7. Greaves John, Mass spectrometry for novice.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)