

COURSE CARD

1. Basic information

Course name in English:	Advanced materials in biophotonics	
Course name in Polish:	Materiały zaawansowane w biofotonice	
Number of hours:	30	
Type of course:	Elective course	
Form of course:	lecture	
Code of course:	W03NCH-SD0059W / NCQ100352W	
Course leader:	Prof. Jarosław Myśliwiec	
Faculty of the course leader:	W3	
Email address of the course leader:	jaroslaw.mysliwiec@pwr.edu.pl	
Scientific discipline(s) assigned to the course (doctoral students representing the marked disciplines can participate in the course):	Architecture and urban planning	
	Automation, electronic, and electrical engineering	
	Information and communication technology	
	Biomedical engineering	
	Chemical engineering	\boxtimes
	Civil engineering and transport	
	Mechanical engineering	
	Environmental engineering, mining, and energy	
	Mathematics	
	Chemical sciences	\boxtimes
	Physical sciences	\boxtimes
	Management and quality studies	

2. Objectives

The course aims to familiarise students with the current information on the use of photonics in research using materials of biological origin. The student will gain knowledge about current research trends and will have the opportunity to get acquainted with the described phenomena from the experimental side.

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Торіс	Number of	Form of classes
		hours	
1	Biophotonics	2	lecture
2	Light-matter interactions, part 1	2	lecture
3	Light-matter interactions, part 2	2	lecture
4	Nanosensors, part 1	2	lecture
5	Nanosensors, part 2	2	lecture

Wrocław University of Science and Technology Doctoral School

6	Deep tissue imaging, part 1	2	lecture
7	Deep tissue imaging, part 2	2	lecture
8	Optical solitons	2	lecture
9	Light amplification	2	lecture
10	Microfabrication	2	lecture
11	Microoptical resonators	2	lecture
12	Optical solitons	2	laboratory
13	Light amplification	2	laboratory
14	Microfabrication	2	laboratory
15	Microoptical resonators	2	laboratory

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants. biology, physics, materials science, optics

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	
SzD_W5	the rules for the dissemination of scientific results, including in open access	
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	X
	formulate and innovatively solve complex problems or perform research tasks, in particular:	
	 define the purpose and subject of scientific research, formulate a research hypothesis, 	
	- develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	

Wrocław University of Science and Technology De

octoral	School	

SzD_U3	communicate on specialised topics to the extent that they enable an active	
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	
SzD_U6	be able to speak a foreign language at B2 level of the Common European	\boxtimes
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	\boxtimes
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	\boxtimes
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Students will be assessed on the basis of their involvement in the express part of the course in the form of a report, after familiarising with the topics in the lecture part.

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Lectures are based on multimedia presentations, including video materials. The experimental part was based on demonstration exercises, with the possibility of defining your own research goals.

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

- 1. Prasad, Paras N. Introduction to biophotonics. John Wiley & Sons, 2003.
- 2. Smolyanskaya, O. A., et al. "Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids." Progress in Quantum Electronics 62 (2018): 1-77.
- 3. Smolyanskaya, O. A., et al. "Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids." Progress in Quantum Electronics 62 (2018): 1-77.
- 4. Collini, Elisabetta. "That quantum feeling." Nature Physics 13.11 (2017): 1040-1040.

5. Bruschini, Claudio, et al. "Single-photon avalanche diode imagers in biophotonics: review and outlook." *Light: Science & Applications* 8.1 (2019): 1-28.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)