

COURSE CARD

1. Basic information

Course name in English:	Finite Element Analysis		
Course name in Polish:	Metoda elementów skończonych		
Number of hours:	30		
Type of course:	Elective course		
Form of course:	mixed forms (combnation of lecture, seminar laboratory)	and	
Code of course:			
Course leader:	PhD. DSc. Artur ILUK, Assoc. Prof.,		
Faculty of the course leader:	W10 Faculty of Mechanical Engineering		
Email address of the course leader:	artur.iulk@pwr.edu.pl		
Scientific discipline(s) assigned to the course (doctoral students representing the marked disciplines can participate in the course):	Architecture and urban planning		
	Automation, electronic, and electrical engineering		
	Information and communication technology	\boxtimes	
	Biomedical engineering	\boxtimes	
	Chemical engineering		
	Civil engineering and transport		
	Mechanical engineering		
	Materials engineering		
	Environmental engineering, mining, and energy		
	Mathematics	\boxtimes	
	Chemical sciences		
	Physical sciences		
	Management and quality studies		

2. Objectives

- C1. Acquiring knowledge of the basics of the theory of the finite element method
- C2. Acquiring the ability to define the appropriate model for FEM calculations.
- C3. Ability to interpret the results of numerical calculations

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Торіс	Number of	Form of classes
		hours	
1	Introduction	1	lecture
2	Assumptions of the finite element method	2	lecture
3	Shape function	3	lecture

Wrocław University of Science and Technology Doctoral School

4	Stiffness matrix	3	lecture
5	Classification of finite elements	2	lecture
6	Plane element	2	lecture
7	Discretization rules	2	lecture
8	Types of analysis	4	lecture
9	Global stiffness matrix	2	lecture
10	Frames and trusses	3	lecture
11	Surface structures	3	lecture
12	Students' presentations	3	seminar

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

Basics of mathematical analysis and matrix algebra

Basics of mechanics, some experience with computer-aided software

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	
	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes
	formulate and innovatively solve complex problems or perform research tasks, in particular:	
	- define the purpose and subject of scientific research, formulate a research hypothesis.	
	- develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	

Wrocław University of Science and Technology Doctoral School

	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active	
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	\boxtimes
SzD_U5	initiate debates and participate in a scientific discourse;	\boxtimes
SzD_U6	be able to speak a foreign language at B2 level of the Common European	\boxtimes
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	\boxtimes
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Short report/presentation concerning a scientific field where the FE is to be applied

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

- N1. Lecture and seminar
- N2. Multimedia presentation
- N3. Problematic discussion
- N4. FE software (e.g. Abaqus, NX, LS-DYNA)

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

Reddy, Junuthula Narasimha. "An introduction to the finite element method." New York 27 (1993).

Rusiński, E., J. Czmochowski, and T. Smolnicki. "Advanced finite element method." *Oficyna Politechniki Wrocławskiej, Wrocław* (2000).

Jürgen. "Finite element method." *Wiley encyclopedia of computer science and engineering* (2007): 1-12.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

language: English