

COURSE CARD

1. Basic information

Course name in English:	Research skills			
Course name in Polish:	Warsztat badacza			
Number of hours:	30			
Type of course:	Research skills			
Form of course:	mixed forms (combination of lecture, seminar laboratory)	and		
Code of course:	W03NCH-SD0091W / NCQ100380W			
Course leader:	Prof.dr hab. Inż. W. Andrzej Sokalski			
Faculty of the course leader:	W3 Faculty of Chemistry			
Email address of the course leader:	sokalski@pwr.edu.pl			
Scientific discipline(s) assigned to	Architecture and urban planning	\boxtimes		
the course (doctoral students representing the marked disciplines can participate in the course):	Automation, electronic, electrical engineering and space technologies			
	Information and communication technology	\boxtimes		
	Biomedical engineering			
	Chemical engineering			
	Civil engineering, geodesy and transport	\boxtimes		
	Materials engineering	\boxtimes		
	Mechanical engineering			
	Environmental engineering, mining, and energy	\boxtimes		
	Mathematics	\boxtimes		
	Chemical sciences	\boxtimes		
	Physical sciences	\boxtimes		
	Management and quality studies	\boxtimes		

2. Objectives

Introductory course for beginning PhD students from all departments delivered since 1995. Course focuses on systematic retrieval and critical evaluation of scientific information from literature, patent, dissertation and research grant databases. Composing database search queries. Writing and editing research papers, selection of most appropriate journals, correspondence with editors and reviewers. Preparing grant, fellowship or conference support applications. Career planning. Arranging international and interdisciplinary collaborations. Searching best experts, research centers for individual training, job and postdoctoral fellowship offers. Writing CV and preparing for interview. Avoiding ethical problems in science. Use of factographic databases and resources of national supercomputer centers. Course grading is based on the quality of report containing critical evaluation of various kinds of information (reviews, books, experts, patents, grants, job offers, conferences, etc.) related to the topics of individual PhD thesis.

3. Content

Wrocław University of Science and Technology Doctoral School

Detailed information about the course content, including topics and form of classes.

No.	Торіс	Number of	Form of classes
		hours	
1	Introduction. Explanation of course goals.	2	lecture
	Setting computer accounts		
2	Structure and composition of research paper,	2	lecture
	manuscript preparation, correspondence with		
	editors and answering reviewer and editor questions		
3	Systematic following of scientific literature,	2	lecture
	composing search queries. Current Contents database.		
4	Citation databases, Web of Knowledge, Scopus, Google	2	lecture
	Scholar. Quality of research papers		
5	Available forms of research funding, searching grant	2	lecture
	databases, preparing grant applications		
6	Preparing posters or oral communications, attending	2	lecture
	conferences		
7	writing CV, serarching fellowships and jobs offers,	2	lecture
	preparing for interview, career planning, arranging		
	international or interdisciplinary cooperation		
8	Ethical problems in science, parasitic journals and	2	lecture
	conferences		
9	Patent and dissertation databases, preparing	2	lecture
	dissertation, looking for breakthrough research topics		
10	Use of factographic databases (Reaxys, Scifinder)	2	lecture
11	Use of factographic databases (Cambridge Structural	2	lecture
	Database) and supercomputer center		
12	Short presentation of individual research	2	seminar
	topics with discussion		
13	Short presentation of individual research	2	seminar
	topics with discussion		
14	Short presentation of individual research	2	seminar
	topics with discussion		
15	Consultations related to reports, corrections and	2	project
	grading final reports		

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

Basic computer skills, communication in English language, predefined topics of PhD thesis

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	

Wrocław University of Science and Technology Doctoral School

SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	
	in the curricula;	
SzD_W4	research methodology;	
SzD_W5	the rules for the dissemination of scientific results, including in open access	\boxtimes
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	\boxtimes
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	\boxtimes
	commercialisation of results of scientific activity and know-how related to these results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	
_	formulate and innovatively solve complex problems or perform research tasks, in	
	particular:	
	- define the purpose and subject of scientific research, formulate a research	
	hypothesis, - develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active	
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	\boxtimes
SzD_U5	initiate debates and participate in a scientific discourse;	
SzD_U6	be able to speak a foreign language at B2 level of the Common European	
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	\boxtimes
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
010_00	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	\boxtimes
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	\boxtimes
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

a) Report with critically evaluated answers related to prospective PhD thesis topics obtained using available literature and factographic databases,

b) short multimedia presentation introducing planned research topics for general public,

c) preliminary version of Individual Research Plan

7. Teaching methods

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Lecture and seminar with short discussion

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

- 1. D. Lindsay, A guide to scientific writing, Longman, 1984
- 2. D. Ridley, Finding scientific information –information retrieval, Wiley, 2002
- 3. M. Carter, Designing Science Presentations, Academic Press, 2013
- On Being Scientist: A Guide to Responsible Conduct in Research: Third Edition,
 National Academy of Sciences (2009)
- 5. M. Heller, Jak być uczonym, Znak, 2013
- 6. N. Hertz, Eyes wide open, Harper Collins, 2013

9. Other remarks

Additional remarks, comments, (e.g., language of the course)