

COURSE CARD

1. Basic information

Course name in English:	Advanced analitycal methods using mass spectrometr spectroscopy NMR	y and
Course name in Polish:	Zaawansowane metody analityczne z zastosowa spektrometrii mas i spektroskopii NMR	aniem
Number of hours:	30	
Type of course:	Elective course	
Form of course:	lecture	
Code of course:		
Course leader:	Prof. dr hab. Piotr Młynarz	
Faculty of the course leader:	W3 Faculty of Chemistry	
Email address of the course leader:	Piotr.mlynarz@pwr.edu.pl	
Scientific discipline(s) assigned to	Architecture and urban planning	
the course (doctoral students	Automation, electronic, and electrical engineering	
representing the marked disciplines can participate in the course):	Information and communication technology	
	Biomedical engineering	\boxtimes
	Chemical engineering	Χ
	Civil engineering and transport	
	Mechanical engineering	
	Environmental engineering, mining, and energy	\boxtimes
	Mathematics	
	Chemical sciences	\boxtimes
	Physical sciences	
	Management and quality studies	

2. Objectives

1. To acquaint students with the issues of applying analytical methods in chemical sciences, biological sciences (biological and environmental systems

2. To acquaint students with the issues of using spectroscopic and spectrometric methods in material chemistry

- 3. Providing students with issues that relate to advanced spectroscopic methods
- 4. Providing students with issues that relate to advanced spectrometric methods
- 5. To acquaint students with scientific literature and examples

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Торіс	Number of	Form of classes
		hours	

Wrocław University of Science and Technology Doctoral School

1	Introduction to spectroscopic methods	2	lecture
2	One-dimensional NMR in analytical studies	4	lecture
3	Advanced 2D and 3D methods in structural research	4	lecture
4	Chromatographic NMR	1	lecture
5	Introduction to spectrometric and separation methods	6	lecture
6	Liquid chromatography coupled with mass spectrometry	5	lecture
7	Gas chromatography coupled with mass spectrometry	4	lecture
8	Application of analytical biological research platforms	2	lecture
9	Application of analytical platforms in material chemistry research	2	lecture
10			Select form
11			Select form
12			Select form
13			Select form
14			Select form
15			Select form

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

- 1. Basic knowledge of organic chemistry
- 2. Knowledge of analytical and instrumental chemistry
- 3. Basic knowledge in the field of NMR spectroscopy and MS mass spectrometry

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	Ø
SzD_W5	the rules for the dissemination of scientific results, including in open access mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	

Wrocław University of Science and Technology Doctoral School

	-	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes
	formulate and innovatively solve complex problems or perform research tasks, in	
	particular:	
	 define the purpose and subject of scientific research, formulate a research hypothesis, 	
	- develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	\boxtimes
SzD_U5	initiate debates and participate in a scientific discourse;	
SzD_U6	be able to speak a foreign language at B2 level of the Common European	
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	\boxtimes
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Assessment of learning outcomes: pass

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

lecture with multimedia presentation, discussion, literature studies

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

1. Analytical Separation Science tom 1-5 Edited by Jared L. Anderson, Alain Berthod, Veronica Pino, Apryll M. Stalcup, Wiley-VCH, Second edition 2013

[2] Translation Dymanimcs and Megnetic Resonance, Paul T. Callghan, Oxford Uniwersity Press, 2011

[3] Spektroskopowe metody identyfikacji związków organicznych, Silverstein Robert M.,

Webster Francis X., Kiemle David J., Wydawnictwo Naukowe PWN, 2012

NMR Spectroscopy, Gunther Harald, Wiley-VCH Verlag GmbH, 2013

4] Elsevier Science Publishing Co Inc, 2015

[5] Fundamentals of Mass Spectrometry, Kenzo Hiraoka, Springer Science & Business Media

[6] Introduction to mass spectrometry, J. Throck Watson, John Wiley & Sons 2013

[7] Handbook of Advanced Chromatography /Mass Spectrometry Techniques, Academic Press and Aocs Press. 2017

8 NMR Data Interpretation Explained: Understanding 1d and 2D NMR Spectra of Organic Compounds and Natural Products, Neil E. Jacobsen, Wiley, 2016

9. Other remarks

Additional remarks, comments, (e.g., language of the course)