

# **COURSE CARD**

# 1. Basic information

| Course name in English:                                           | Applied Partial Differential Equations                                |             |
|-------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|
| Course name in Polish:                                            | Zastosowania Równań Różniczkowych Cząstkowych                         |             |
| Number of hours:                                                  | 30                                                                    |             |
| Type of course:                                                   | Elective course                                                       |             |
| Form of course:                                                   | lecture                                                               |             |
| Code of course:                                                   |                                                                       |             |
| Course leader:                                                    | dr hab. inż. Łukasz Płociniczak                                       |             |
| Faculty of the course leader:                                     | W13 Faculty of Pure and Applied Mathematics                           |             |
| Email address of the course leader:                               | lukasz.plociniczak@pwr.edu.pl                                         |             |
| Scientific discipline(s) assigned to                              | Architecture and urban planning                                       |             |
| the course (doctoral students representing the marked disciplines | Automation, electronic, electrical engineering and space technologies |             |
| can participate in the course):                                   | Information and communication technology                              |             |
|                                                                   | Biomedical engineering                                                |             |
|                                                                   | Chemical engineering                                                  | $\boxtimes$ |
|                                                                   | Civil engineering, geodesy and transport                              |             |
|                                                                   | Materials engineering                                                 |             |
|                                                                   | Mechanical engineering                                                |             |
|                                                                   | Environmental engineering, mining, and energy                         | ⊠           |
|                                                                   | Mathematics                                                           |             |
|                                                                   | Chemical sciences                                                     |             |
|                                                                   | Physical sciences                                                     |             |
|                                                                   | Management and quality studies                                        | $\boxtimes$ |

# 2. Objectives

C1 The student will learn selected topics in the theory and applications of partial differential equations.

C2 The student will acquire skills of applying learnt material in fields where there is a need for using partial differential equations.

## 3. Content

Detailed information about the course content, including topics and form of classes.

| No. | Торіс | Number of | Form of classes |
|-----|-------|-----------|-----------------|
|     |       | hours     |                 |



Wrocław University of Science and Technology Doctoral School

| 1  | The meaning of differential equations in mathematical    | 2 | lecture |
|----|----------------------------------------------------------|---|---------|
|    | modelling. Examples introducing partial differential     |   |         |
|    | equations of the first degree. Conservation laws.        |   |         |
| 2  | Method of characteristics and Charpit's system. Eikonal  | 2 | lecture |
|    | equation.                                                |   |         |
| 3  | Inviscid Burgers equations: weak solutions.              | 4 | lecture |
|    | Rankine-Hugoniot condition. Shock waves. Applications    |   |         |
|    | in various sciences.                                     |   |         |
| 4  | Systems of first order equation. Shallow water           | 4 | lecture |
|    | equations and gasdynamics. A model of A-bomb (or         |   |         |
|    | supernova) explosion.                                    |   |         |
| 5  | Derivation of the heat equation. Separation of           | 4 | lecture |
|    | variables. Fundamental solution. Solution of Cauchy      |   |         |
|    | problem on several domains. Applications in              |   |         |
|    | technology, physics and geology.                         |   |         |
| 6  | Free-boundary problems. Stefan problem. A model of       | 2 | lecture |
|    | freezing lake.                                           |   |         |
| 7  | Nonlinear parabolic equations. Self-similar solutions.   | 2 | lecture |
|    | Porous medium equation and Barenblatt's solution. A      |   |         |
|    | model of glacier movement. Fisher's equation.            |   |         |
| 8  | Gravitational potential and derivation of the Laplace    | 4 | lecture |
|    | and Poisson equations. Remark concerning separation      |   |         |
|    | of variables. Fundamental solution and Green's           |   |         |
|    | function. Integral representation of solutions.          |   |         |
|    | Applications in electrostatics, geological surveying and |   |         |
|    | astrophysics.                                            |   |         |
| 9  | Derivation of vibrating string equations and its         | 4 | lecture |
|    | generalization for higher dimension. d'Alembert's and    |   |         |
|    | spherically symmetric solutions. Mechanical, acoustic    |   |         |
|    | and electromagnetic waves.                               |   |         |
| 10 | Derivation of the Navier-Stokes equations. Remark        | 2 | lecture |
|    | concerning existence and uniqueness. Primitive           |   |         |
|    | equations of geophysical fluid dynamics. Geostrophic     |   |         |
|    | balance. Taylor-Proudman Theorem. Weather forecast.      |   |         |
|    | · · · · · · · · · · · · · · · · · · ·                    |   |         |

# 4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

1. Student knows the basic theory of calculus, ordinary differential equations and vector fields.

2. Student is able to search for supplementary material in various areas of knowledge.

#### 5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).



Wrocław University of Science and Technology Doctoral School

|         | KNOWLEDGE. Doctoral student knows and understands:                                    |             |
|---------|---------------------------------------------------------------------------------------|-------------|
| SzD_W3  | the main trends in the development of the scientific or artistic disciplines covered  | $\boxtimes$ |
|         | in the curricula;                                                                     |             |
| SzD_W4  | research methodology;                                                                 | $\boxtimes$ |
| SzD_W5  | the rules for the dissemination of scientific results, including in open access mode; |             |
| SzD_W6  | the fundamental dilemmas of modern civilization;                                      |             |
| SzD_W7  | the legal and ethical conditions of scientific activity;                              |             |
| SzD_W8  | the economic and other relevant conditions of scientific activity;                    |             |
| SzD_W9  | basic principles of knowledge transfer to the economic and social spheres and         |             |
|         | commercialisation of results of scientific activity and know-how related to these     |             |
|         | results.                                                                              |             |
|         | SKILLS. Doctoral student is able to:                                                  |             |
| SzD_U2  | use knowledge from different fields of science or art to creatively identify,         | $\boxtimes$ |
|         | formulate and innovatively solve complex problems or perform research tasks, in       |             |
|         | particular:                                                                           |             |
|         | hypothesis.                                                                           |             |
|         | - develop research methods, techniques and tools, and use them creatively,            |             |
|         | - draw conclusions on the basis of scientific research;                               |             |
|         | critically analyse and evaluate the results of scientific research, expertise and     |             |
|         | other creative work and their contribution to knowledge development;                  |             |
| S7D 113 | communicate on specialised tonics to the extent that they enable an active            |             |
| 520_05  | participation in the international scientific community;                              |             |
| SzD_U4  | disseminate research results, including in popular forms;                             | $\boxtimes$ |
| SzD_U5  | initiate debates and participate in a scientific discourse;                           |             |
| SzD_U6  | be able to speak a foreign language at B2 level of the Common European                |             |
|         | Framework of Reference for Languages to a level that enables them to participate      |             |
|         | in the international scientific and professional environment;                         |             |
| SzD_U7  | plan and implement an individual or collective research or creative activity,         |             |
| SZD U8  | independently plan and act for one's own development and inspire and organize         |             |
|         | the development of others;                                                            |             |
| SzD_U9  | plan classes or groups of classes and implement them using modern methods and         |             |
|         |                                                                                       |             |
|         | SOCIAL COMPETENCES. Doctoral student is ready to:                                     |             |
| 32U_K3  | activities thinking and acting in an entrepreneurial way                              |             |
| SzD K4  | maintaining and developing the ethos of research and creative environments.           |             |
| ·       | including:                                                                            |             |
|         | - carrying out scientific activities in an independent manner,                        |             |
|         | - respecting the principle of public ownership of research results, taking into       |             |
|         | account the principles of intellectual property protection.                           |             |



# 6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Report, Presentation

### 7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Lecture, Consultations

#### 8. Literature

*List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.* 

[1] R. Haberman, Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, Pearson, 2012.

[2] A.N. Tichonow, A. A. Samarski, Równania fizyki matematycznej, PWN, 1963.

[3] J.D. Logan, An introduction to nonlinear partial differential equations, John Wiley & Sons, 2008.

[4] P. Markowich, Applied Partial Differential Equations: A Visual Approach, Springer Science & Business Media, 2007.

## 9. Other remarks

Additional remarks, comments, (e.g., language of the course)