

COURSE CARD

1. Basic information

Course name in English:	Mathematica as a versatile tool of symbolic and numerical analysis		
Course name in Polish:	<u> </u>	nalizy	
Number of hours:	30		
Type of course:	Elective course		
Form of course:	lecture		
Code of course:			
Course leader:	Marek Kawa		
Faculty of the course leader:	W2 Faculty of Civil Engineering		
Email address of the course leader:	marek.kawa@pwr.edu.pl		
Scientific discipline(s) assigned to the course (doctoral students representing the marked disciplines can participate in the course):	Architecture and urban planning	×	
	Automation, electronic, electrical engineering and space technologies	×	
	Information and communication technology	×	
	Biomedical engineering	\boxtimes	
	Chemical engineering	×	
	Civil engineering, geodesy and transport		
	Materials engineering		
	Mechanical engineering	×	
	Environmental engineering, mining, and energy	×	
	Mathematics	×	
	Chemical sciences		
	Physical sciences	×	
	Management and quality studies		

2. Objectives

- 1. Refreshing knowledge in the selected fields of mathematics, such as algebra, mathematical analysis, differential equations.
- 2. Learning the methods of the mathematical modelling and symbolic numerical analysis of engineering problems.
- 3. Developing skills of creating numerical algorithms.

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Торіс	Number of	Form of classes
<u> </u>		hours	
1	Introduction: course description, Mathematica	2	lecture
	software package presentation.		
2	Introduction: Mathematica software package	2	lecture
	presentation cont.		
	Language basics: variables, expressions, formulas.		
3	Language basics: functions and procedures.	2	lecture
4	Language basics: lists and operations on lists.	2	lecture
5	Language basics: transformation of formulas, algebraic	2	lecture
	operations and transformations.		
6	Language basics: basic 2D and 3D graphical procedures.	2	lecture
7	Solving algebraic equations and inequalities. Linear	2	lecture
	algebra and matrix operations.		
8	Differential and integral calculus. Series. Approximation	2	lecture
	and interpolation.		
9	Solving differential equations.	2	lecture
10	Solving differential equations cont.	2	lecture
11	Optimization procedures. Predefined mathematical	2	lecture
	functions.		
12	Numerical operations and functions.	2	lecture
13	Data import and export.	2	lecture
14	Dynamic interaction.	2	lecture
15	Presentation of selected additional problems.	2	lecture

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

Necessary advanced knowledge in the selected fields of mathematics (analysis, algebra).

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	×
	in the curricula;	
SzD_W4	research methodology;	×
SzD_W5	the rules for the dissemination of scientific results, including in open access mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	

SzD_W9	basic principles of knowledge transfer to the economic and social spheres and		
	commercialisation of results of scientific activity and know-how related to these		
	results.		
	SKILLS. Doctoral student is able to:		
SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes	
	formulate and innovatively solve complex problems or perform research tasks, in particular:		
	- define the purpose and subject of scientific research, formulate a research hypothesis,		
	- develop research methods, techniques and tools, and use them creatively,		
	- draw conclusions on the basis of scientific research;		
	critically analyse and evaluate the results of scientific research, expertise and		
	other creative work and their contribution to knowledge development;		
	transfer the results of scientific activities to the economic and social spheres;		
SzD_U3	communicate on specialised topics to the extent that they enable an active	\boxtimes	
	participation in the international scientific community;	<u> </u>	
SzD_U4	disseminate research results, including in popular forms;	×	
SzD_U5	initiate debates and participate in a scientific discourse;		
SzD_U6	be able to speak a foreign language at B2 level of the Common European		
	Framework of Reference for Languages to a level that enables them to participate		
	in the international scientific and professional environment;		
SzD_U7	plan and implement an individual or collective research or creative activity,		
	including in an international environment;		
SzD_U8	independently plan and act for one's own development and inspire and organize the development of others;		
SzD_U9	plan classes or groups of classes and implement them using modern methods and tools.		
	SOCIAL COMPETENCES. Doctoral student is ready to:		
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest		
	activities, thinking and acting in an entrepreneurial way;		
SzD_K4	maintaining and developing the ethos of research and creative environments,		
	including:		
	- carrying out scientific activities in an independent manner,		
	- respecting the principle of public ownership of research results, taking into		
	account the principles of intellectual property protection.		

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Final test

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Multimedia presentations.

Conventional lecture.

Own work.

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

- 1.S. Wolfram, The Mathematica book, Wofram Media, 2003 Boccara, N. (2007). Essentials of Mathematica: With Applications to Mathematics and Physics.: Springer New York.
- 2. Groves, B. R. (2013). Basic "Mathematica" programming tutorial. Vinculum, 50(4), 12–14.
- 3. Cliff, H., Kelvin, M., & Michael, M. (2016). Hands-on Start to Wolfram Mathematica and Programming with the Wolfram Language, ; Wolfram Media. *Inc.: Champaign, IL, USA*.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)