

COURSE CARD

1. Basic information

Course name in English:	Social Robotics	
Course name in Polish:	Robotyka społeczna	
Number of hours:	30	
Type of course:	Elective course	
Form of course:	lecture	
Code of course:		
Course leader:	Dr inż. Krzysztof Arent	
Faculty of the course leader:	W12 Faculty of Electronics, Photonics and Microsystems	S
Email address of the course leader:	krzysztof.arent@pwr.edu.pl	
Scientific discipline(s) assigned to the course (doctoral students representing the marked disciplines can participate in the course):	Architecture and urban planning	
	Automation, electronic, electrical engineering and space technologies	
	Information and communication technology	×
	Biomedical engineering	
	Chemical engineering	
	Civil engineering, geodesy and transport	
	Materials engineering	
	Mechanical engineering	
	Environmental engineering, mining, and energy	
	Mathematics	
	Chemical sciences	
	Physical sciences	
	Management and quality studies	

2. Objectives

- C1. Gaining competencies of creating a common social space for human and robots.
- C2. Gainig knowledge about technology of social robots.

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Topic	Number of	Form of classes
		hours	
1	Socially interactive robot: an introduction	2	lecture
2	Computational models of emotion	4	lecture
3	User's model, intentionality	2	lecture
4	Memory	2	lecture

5	Embodiment and design of a social robot	2	lecture
6	Humanoid robot: introduction		lecture
7	7 Humanoid robot NAO		lecture
8	Software environments for implementation and	2	lecture
	integration of a social robot control system		
9	Human – robot communication	4	lecture
10	Human – robot spatial interaction	2	lecture
11	Research Methods	2	lecture
12	Research on Robot-Assisted Therapy for Children with	2	lecture
	Autism		
13			Select form
14			Select form
15			Select form

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

no requirements

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	
SzD_W5	the rules for the dissemination of scientific results, including in open access mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	
	formulate and innovatively solve complex problems or perform research tasks, in	
	particular:	
	 define the purpose and subject of scientific research, formulate a research hypothesis, 	
	- develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	

	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active	
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	
SzD_U6	be able to speak a foreign language at B2 level of the Common European	
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

exam

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Lecture, consultations, self-study

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

- [1] Bartneck, C., Belpaeme, T., Eyssel, F., Kanda, T., Keijsers, M., & Šabanović, S. (2020). Human-Robot Interaction: An Introduction. Cambridge: Cambridge University Press. doi:10.1017/9781108676649
- [2] Joscha Bach, Principles of Synthetic Intelligence PSI: An Architecture of Motivated Cognition, Oxford University Press, 2009 DOI:10.1093/acprof:oso/9780195370676.001.0001
- [3] C. Breazeal, Designing Sociable Robots, MIT Press, Cambridge, MA, 2002

[4] Breazeal, C., Dautenhahn, K., Kanda, T. (2016). Social Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007 [5] Fong, T., Nourbakhsh, I., Dautenhahn. K., A survey of socially interactive robots, Robotics and Autonomous Systems, Volume 42, Issues 3–4, 2003, Pages 143-166, ISSN 0921-8890, https://doi.org/10.1016/S0921-8890(02)00372-X

[6] Matarić, M.J., Scassellati, B. (2016). Socially Assistive Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham.

https://doi.org/10.1007/978-3-319-32552-1_73

[7] Mutlu, B., Roy, N., Šabanović, S. (2016). Cognitive Human–Robot Interaction. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_71

- [8] Scassellati, B. Theory of Mind for a Humanoid Robot. Autonomous Robots 12, 13–24 (2002). https://doi.org/10.1023/A:1013298507114
- [9] Scassellati, B., Admoni, H., Matarić, M. Robots for use in autism research, Annu Rev Biomed Eng. 2012;14:275-94. doi: 10.1146/annurev-bioeng-071811-150036.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)