

COURSE CARD

1. Basic information

Course name in English:	Selected topics in philosophy of science	
Course name in Polish:	Wybrane zagadnienia filozofii nauki	
Number of hours:	15	
Type of course:	Elective course	
Form of course:	lecture	
Code of course:	DHQ100308W/W08000-SD0093W	
Course leader:	Dr Mateusz Kotowski	
Faculty of the course leader:	W8 Faculty of Management	
Email address of the course leader:	mateusz.kotowski@pwr.edu.pl	
Scientific discipline(s) assigned to	Architecture and urban planning	\boxtimes
the course (doctoral students	Automation, electronic, and electrical engineering	\boxtimes
representing the marked disciplines can participate in the	Information and communication technology	
course):	Biomedical engineering	\boxtimes
	Chemical engineering	\boxtimes
	Civil engineering and transport	\boxtimes
	Mechanical engineering	\boxtimes
	Environmental engineering, mining, and energy	\boxtimes
	Mathematics	\boxtimes
	Chemical sciences	\boxtimes
	Physical sciences	\boxtimes
	Management and quality studies	\boxtimes

2. Objectives

1. Introduce students to basic concepts and issues of philosophy and methodology of empirical sciences

2. Introduce students to selected results of contemporary metascientific studies

3. Make students aware of the social role of scientists and their responsibilities

4. Introduce students to contemporary approaches in science management and to make them aware of the related meta-scientific and social problems

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Торіс	Number of hours	Form of classes
1	Conventional image of science and its inadequacy	1	lecture

Wrocław University of Science and Technology Doctoral School

2	Basic assumptions of confirmationist methodologies	2	lecture
3	Criticism of falsificationism		lecture
4	Epistemological lessons from the historical studies of	2	lecture
	science		
5	The problem of pseudoscience	2	lecture
6	Bad science	2	lecture
7	The problem with models of scientific evaluation	2	lecture
8	The question of the epistemic status of scientific	2	lecture
	theories		

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

Basic knowledge in humanities and social sciences.

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	
	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access	
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	\boxtimes
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	
	formulate and innovatively solve complex problems or perform research tasks, in	
	particular:	
	 define the purpose and subject of scientific research, formulate a research hypothesis, 	
	- develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	

Wrocław University of Science and Technology

Doctoral School

SzD_U3	communicate on specialised topics to the extent that they enable an active	
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	\boxtimes
SzD_U6	be able to speak a foreign language at B2 level of the Common European	
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	\boxtimes
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	\boxtimes
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	\boxtimes
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Presentation or oral exam, activity in in-class discussions

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

- N1. Informative lecture
- N2. Interactive lecture
- N3. Multimedia presentation

N4. Discussion

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

PRIMARY LITERATURE:

[1] Lipton P., Inference to the Best Explanation, Routledge (1991)

Wrocław University of Science and Technology Doctoral School

- [2] Morawski R.Z., *Technoscientific Research. Methodological and Ethical Aspects*, de Gruyter (2019)
- [3] Papineau D. (ed.), The Philosophy of Science, Oxford University Press (1996)
- [4] Pigliucci M., Boundry M. (eds.), *Philosophy of Pseudoscience: Reconsidering the Demarcation Problem*, The University of Chicago Press (2013)
- [5] Psillos S., *Philosophy of Science A–Z*, Edinburgh University Press (2007)

SECONDARY LITERATURE:

- [1] Carnap R., *Philosophy and Logical Syntax*, Ams Pr Inc (1979)
- [2] Cartwright N., How the Laws of Physics Lie, Oxford University Press (1983)
- [3] Duhem P., *The Aim and Structure of Physical Theory*, P.P. Wiener (trans), Princeton University Press (1954)
- [4] Feyerabend P.K., Against Method, Verso Books (1975)
- [5] Hossenfelder S., *Lost in Math: How Beauty Leads Physics Astray*, Hachette (2018)
- [6] Kragh H., *Higher Speculations: Grand Theories and Failed Revolutions in Physics and Cosmology,* Oxford University Press (2015);
- [7] Krimsky S., Science in the Private Interest: Has the Lure of Profits Corrupted Biomedical Research?, Rowman & Littlefield Publishers (2003)
- [8] Kuhn T.S., The Structure of Scientific Revolutions, University of Chicago Press (1962)
- [9] Lakatos I., *The Methodology of Scientific Research Programmes*, Cambridge University Press (1978)
- [10] Park R, Superstition: Belief in the Age of Science, Princeton University Press (2008)
- [11] Park R, Voodoo Science: The Road from Foolishness to Fraud, Oxford University Press (2000)
- [12] Pigliucci M., Nonsense on Stilts: How to Tell Science from Bunk, The University of Chicago Press (2010)
- [13] Poincaré H., The Value of Science: Essential Writings of Henri Poincaré, Modern Library (2001)
- [14] Popper K.R., Conjectures and Refutations, Routledge (1963)
- [15] Popper K.R., *The Logic of Scientific Discovery*, Routledge (2002)
- [16] Stanford Encyclopedia of Philosophy, <u>https://plato.stanford.edu/</u>

9. Other remarks

Additional remarks, comments, (e.g., language of the course)