

COURSE CARD

1. Basic information

Course name in English:	Artificial Intelligence: Introduction and application	n in
	Engineering	
Course name in Polish:	Sztuczna Inteligencja: Wprowadzenie i zastosowan	ia w
	inżynierii	
Number of hours:	30	
Type of course:	Elective course	
Form of course:	lecture	
Code of course:	W10IME-SD0033W / MEQ100421W	
Course leader:	Dr inż. Marek Sawicki	
Faculty of the course leader:	W10 Faculty of Mechanical Engineering	
Email address of the course leader:	Sawicki.marek@pwr.edu.pl	
Scientific discipline(s) assigned to	Architecture and urban planning	\boxtimes
the course (doctoral students	Automation, electronic, and electrical engineering	\boxtimes
representing the marked	Information and communication technology	\boxtimes
course):	Biomedical engineering	\boxtimes
	Chemical engineering	\boxtimes
	Civil engineering and transport	\boxtimes
	Mechanical engineering	\boxtimes
	Environmental engineering, mining, and energy	\boxtimes
	Mathematics	
	Chemical sciences	
	Physical sciences	
	Management and quality studies	

2. Objectives

C1. To gain basic knowledge related to artificial intelligence.

C2. To gain skills to determine problems possible to solve with artificial intelligence in student PhD work.

C3. To gain skills to program basic models with implemented artificial intelligence.

C4. To gain skills related to search information about artificial intelligence methods, algorithms and best practices.

C5. To gain up-to-date knowledge about achievements in Engineering with usage of artificial intelligence

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Торіс	Number of	Form of classes
		hours	

Wrocław University of Science and Technology Doctoral School

1	Introduction to Artificial Intelligence: Basic concepts, history of AI, trends and direction of AI development. Ethics of AI.	2	lecture
2	Introduction to regression, classification and	2	lecture
	clustering. Discission about basic concepts and		
	challenges of AI.		
3	Presentation of current Integrated Developer	2	lecture
	Environments, AI platforms, and programming		
	packages for implementation of AI algorithms.		
4	Review of methods, models and algorithms. Discussion	2	lecture
	about implementation and application.		
5	Application of AI in Mechanical Engineering: Review of	2	lecture
	current state of the art achievements in Mechanical		
	Engineering based on literature review.		
6	Application of neural network in Mechanical	2	lecture
	Engineering: Detail case study.		
7	Parallel Coding lecture: Input Data preparation	2	lecture
8	Parallel Coding lecture: Regression Models	2	lecture
9	Parallel Coding lecture: Classification Models	2	lecture
10	Parallel Coding lecture: Simple Artificial Neural	2	lecture
	Network Models		
11	Parallel Coding lecture: Convolutional Neural Network	2	seminar
	Models		
12	PhD students presentation and discussion 1:	2	seminar
	Presentation of a possible application of AI in area		
	related to the planned PhD thesis or Literature review		
	of AI usage with respect to planned PhD reseach field		
13	PhD students presentation and discussion 2:	2	seminar
	Presentation of a possible application of AI in area		
	related to the planned PhD thesis or Literature review		
	of AI usage with respect to planned PhD reseach field		
14	PhD students presentation and discussion 3:	2	seminar
	Presentation of a possible application of AI in area		
	related to the planned PhD thesis or Literature review		
4 5	of AI usage with respect to planned PhD reseach field	2	
15	Price students presentation and discussion 4:	2	seminar
	Presentation of a possible application of AI in area		
	related to the planned PhD thesis or Literature review		
	of AI usage with respect to planned PhD reseach field		

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

- 1. Basic knowledge in:
 - a) Information Technology
 - b) Programming (Python 3.x)
 - c) Mathematics and statistics
- 2. Pre-defined research topic of PhD

3. General knowledge in related field of Engineering at the second level of studies

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access	
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes
	formulate and innovatively solve complex problems or perform research tasks, in	
	particular:	
	- define the purpose and subject of scientific research, formulate a research	
	nypotnesis,	
	- draw conclusions on the basis of scientific research:	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development:	
	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active	
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	\boxtimes
SzD_U6	be able to speak a foreign language at B2 level of the Common European	
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
6 D 110	including in an international environment;	
	independently plan and act for one's own development and inspire and organize	
S2D 110	the development of others;	
320_09	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	

Wrocław University of Science and Technology Doctoral School

SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	Χ
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Evaluation is based on PhD student's presentation during seminar meetings.

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

N1. Lecture N2. Presentation N3. Discussion N4. Self work N5. Parallel coding with teacher

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

- [1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
- [2] C. M. Bishop, Pattern Recognition and Machine Learning. Springer New York, 2016.
- [3] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep Learning. 2020.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

Python programming language is a base of AI considerations.