

COURSE CARD

1. Basic information

Course name in English:	TRIZ. Theory of Inventive Problem Solving		
Course name in Polish:	TRIZ. Teoria innowacyjnego rozwiązywania problemów		
Number of hours:	15		
Type of course:	Elective course		
Form of course:	mixed forms (combination of lecture, seminar laboratory)	and	
Code of course:	MEQ100448W/W10IME-SD0147W		
Course leader:	Dr hab. inż. Sebastian Koziołek, prof. PWr , Dr inż. Marek Piotr Mysior		
Faculty of the course leader:	W10 Faculty of Mechanical Engineering		
Email address of the course leader:	sebastian.koziolek@pwr.edu.pl marek.mysior@pwr.edu.pl		
Scientific discipline(s) assigned to	Architecture and urban planning	\boxtimes	
the course (doctoral students	Automation, electronic, and electrical engineering		
representing the marked disciplines can participate in the	Information and communication technology		
course):	Biomedical engineering		
	Chemical engineering		
	Civil engineering and transport	\boxtimes	
	Mechanical engineering		
	Environmental engineering, mining, and energy	\boxtimes	
	Mathematics		
	Chemical sciences		
	Physical sciences		
	Management and quality studies	\boxtimes	

2. Objectives

- C1. Acquiring knowledge about the methods of designing inventions with high innovative potential using systematic and heuristic methods.
- C2. Acquisition of knowledge and skill in defining contradictions
- C3. Acquisition of knowledge and skill in functional modeling of a technical systems
- C4. Acquiring the skills of inventive problem solving
- C5. Acquiring the ability to plan and conduct inventive workshops using TRIZ,

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Topic	Number of	Form of classes
		hours	
1	Introduction to TRIZ. Basic concepts	2	lecture
	Lecture and Group Discussion		
2	Modelling and solving contradictions	2	lecture
	Lecture and Group Discussion		
3	Contradiction matrix and inventive principles - example	2	laboratory
	Case study		
4	System operator in TRIZ	2	laboratory
	Lecture and Group Discussion		
5	Functional modeling of technical systems	2	laboratory
	Lecture and Group Discussion		
6	"Trimming" as a tool to increase ideality	2	laboratory
	Lecture and Case Study		
7	Solving selected problem using TRIZ	2	project
	Case study, group work		
8	Evaluation classes	1	project

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

- 1. The ability to design technical objects.
- 2. Ability to model CAD geometric parts and assemblies.
- 3. Ability to work in a team.
- 4. Ability to discuss and present own opinion in the aspect of problem solving

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	
SzD_W5	the rules for the dissemination of scientific results, including in open access	
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	\boxtimes
	commercialisation of results of scientific activity and know-how related to these	
	results.	

4	200	Ca	Doctora

	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify, formulate and innovatively solve complex problems or perform research tasks, in particular: - define the purpose and subject of scientific research, formulate a research hypothesis, - develop research methods, techniques and tools, and use them creatively, - draw conclusions on the basis of scientific research; critically analyse and evaluate the results of scientific research, expertise and other creative work and their contribution to knowledge development;	
SzD_U3	transfer the results of scientific activities to the economic and social spheres; communicate on specialised topics to the extent that they enable an active participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	\boxtimes
SzD_U6	be able to speak a foreign language at B2 level of the Common European Framework of Reference for Languages to a level that enables them to participate in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity, including in an international environment;	\boxtimes
SzD_U8	independently plan and act for one's own development and inspire and organize the development of others;	\boxtimes
SzD_U9	plan classes or groups of classes and implement them using modern methods and tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments, including: - carrying out scientific activities in an independent manner, - respecting the principle of public ownership of research results, taking into account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

- problem discussion and activity in class
- final project evaluation
- preparation to class

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

- N1. traditional lecture with the use of transparencies and slides
- N2. problem discussion

- N3. case study
- N4. Team work of students under the supervision of the teacher
- N5. self study preparation for project class

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

PRIMARY LITERATURE

- [1] L. Haines-Gadd, TRIZ For Dummies. Wiley, 2016.
- [2] G. S. Altschuller, The Innovation Algorithm. TRIZ, Systematic Innovation and Technical Creativity, II. Worcester: Technical Innovation Center, Inc., 2007.
- [3] Altschuller, G.: Creativity As an Exact Science, 1984
- [4] Altschuller, G.: And Suddenly the Inventor Appeared: TRIZ: Theory of Inventive Problem Solving, 2021

SECONDARY LITERATURE

- [1] S. Koziołek i T. Arciszewski, "Syntectical building of representation space: a key to computing education", w Computing in Civil Engineering, 2011, ss. 1–15.
- [2] Altschuller, G.i in.:40 Principles TRIZ: Extended Edition: Keys to Technical Innovation, 2021
- [3] S. Koziołek. Inventiveness engineering. Methodology of designing innovative technical systems. Publishing House of Wrocław University of Science and Technology, first edition. Wrocław 2019.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

Course in english