

COURSE CARD

1. Basic information

Course name in English:	Biorefineries in Sustainable Development			
Course name in Polish:	Biorafinerie w zrównoważonym rozwoju			
Number of hours:	30			
Type of course:	Elective course			
Form of course:	mixed forms (combination of lecture, seminar laboratory)	and		
Code of course:	W03INC-SD0104W / CIQ100399W			
Course leader:	assoc. prof. Izabela Pawlaczyk-Graja, PhD, DSc, Eng			
Faculty of the course leader:	W3 Faculty of Chemistry			
Email address of the course leader:	izabela.pawlaczyk@pwr.edu.pl			
Scientific discipline(s) assigned to the course (doctoral students representing the marked disciplines can participate in the course):	Architecture and urban planning			
	Automation, electronic, and electrical engineering			
	Information and communication technology			
	Biomedical engineering			
	Chemical engineering			
	Civil engineering and transport			
	Mechanical engineering			
	Environmental engineering, mining, and energy			
	Mathematics			
	Chemical sciences	\boxtimes		
	Physical sciences			
	Management and quality studies			

2. Objectives

C1 To acquaint PhD students with the principles of economic analysis and appropriate selection

of processes unit used in technologies for processing renewable raw materials.

C2 Develop the ability to draw conclusions and synthetic thinking in terms of

selection of unit processes in refineries, taking into account sustainable principles development.

C3 To acquaint PhD students with the latest achievements in the field of biomass utilization

for the production of chemicals and modern technology products.

3. Content

Detailed information about the course content, including topics and form of classes.

Wrocław University of Science and Technology Doctoral School

No.	Торіс
1	Biorefinery concept. Economic challenges.
2	Methodologies for the economic analysis of

		hours	
1	Biorefinery concept. Economic challenges.	2	lecture
2	Methodologies for the economic analysis of	2	lecture
	biorefineries.		
3	Basic principles of biorefinery design including heat	2	lecture
	integration.		
4	Life cycle analysis (LCA) in biorefineries.	2	lecture
5	Analysis of the biorefinery impact on the environment	2	lecture
	and society. Monitoring of indicators.		
6	Unit processes in biorefineries - reaction strategies.	2	lecture
7	Unit processes in biorefineries - bioreactors.	2	lecture
8	Unit processes in biorefineries - bioproduct separation	2	lecture
	techniques.		
9	Methods for optimizing technological processes.	2	lecture
10	Renewable raw materials for biorefining processes.	2	lecture
11	Biomass processing technologies - lignocellulose	2	lecture
	biorefineries.		
12	Biomass processing technologies - cereal biorefineries.	2	lecture
13	Biomass processing technologies - biooils.	2	lecture
14	Biomass processing technologies - case studies	2	seminar
	including sustainable development rules.		
15	Biomass processing technologies - case studies	2	seminar
	including sustainable development rules.		

Number of

Form of classes

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

- 1. Basic knowledge of chemical processes.
- 2. General knowledge in the field of organic chemistry and chemical engineering.

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	X
	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access	
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	\boxtimes
SzD_W7	the legal and ethical conditions of scientific activity;	

Wrocław University of Science and Technology Doctoral School

SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	\boxtimes
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes
	formulate and innovatively solve complex problems or perform research tasks, in	
	particular:	
	 define the purpose and subject of scientific research, formulate a research hypothesis, 	
	- develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active	\boxtimes
	participation in the international scientific community;	_
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	\boxtimes
SzD_U6	be able to speak a foreign language at B2 level of the Common European	
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SZD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	\boxtimes
	activities, thinking and acting in an entrepreneurial way;	
32D_K4	inductions and developing the ethos of research and creative environments,	
	- carrying out scientific activities in an independent manner	
	- respecting the principle of public ownership of research results taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Preparation of a selected example on biorefinery in the form of a multimedia presentation

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Informative lecture with elements of a problem lecture, multimedia presentation, discussion, literature studies, own work.

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

[1] Burczyk B., Biomasa. Surowiec do syntez chemicznych i produkcji paliw. Wyd. 2, Wydawnictwo Politechniki Wrocławskiej, Wrocław, 2019.

[2] Sadhukhan J., Ng K.S., Hernandez E.M., Biorefineries and Chemical Processes Design, Integration and Sustainability Analysis. John Wiley & Sons, Ltd., 2014.

[3] Rabaçal M., Ferreira A.F., Silva C.A.M., Costa M., Biorefineries. Targeting Energy, High Value Products and Waste Valorisation. Springer International Publishing AG, 2017.

[4] Bastidas-Oyanedel J.-R., Schmidt J.E., Biorefinery. Integrated Sustainable Processes for Biomass Conversion to Biomaterials, Biofuels, and Fertilizers. Springer Nature Switzerland AG, 2019.

[5] Burczyk B.: Zielona chemia. Zarys. Wydawnictwo Politechniki Wrocławskiej, Wrocław, 2006.

[6] Bergeron C., Carrier D. J., Ramaswamy S.: Boirefinery Co-products. Phytochemicals, Primary Metabolites and Value-Added Biomass Processing. John Wiley & Sons, Ltd., 2012.

[7] Kamm B., Gruber P. R., Kamm M.: Biorefineries – Industrial Processes and Product. WILEY-VCH Verlag GmbH & Co., 2006.

[8] Figoli A., Cassano A., Basile A., Membrane Technologies for Biorefining. Woodhead Publishing, Elsevier Ltd., 2016.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)