

COURSE CARD

1. Basic information

Course name in English:	Polarization techniques in electrochemistry and corrosion		
Course name in Polish:	Techniki polaryzacyjne w elektrochemii i korozji		
Number of hours:	15		
Type of course:	Elective course		
Form of course:	mixed forms (combination of lecture, seminar laboratory)	and	
Code of course:	W03INC-SD0103W / CIQ100398W		
Course leader:	DSc Eng Juliusz Winiarski, Assoc Prof		
Faculty of the course leader:	W3 Faculty of Chemistry		
Email address of the course leader:	juliusz.winiarski@pwr.edu.pl		
Scientific discipline(s) assigned to the course (doctoral students	Architecture and urban planning		
	Automation, electronic, and electrical engineering	\boxtimes	
representing the marked disciplines can participate in the	Information and communication technology		
course):	Biomedical engineering	\boxtimes	
	Chemical engineering	\boxtimes	
	Civil engineering and transport	\boxtimes	
	Mechanical engineering	\boxtimes	
	Environmental engineering, mining, and energy		
	Mathematics		
	Chemical sciences		
	Physical sciences		
	Management and quality studies		

2. Objectives

O1. To understand the nature of corrosion.

- O2. Understand the interactions of the surface of the material with the corrosive environment.
- O3. Introduction to modern techniques of materials testing: EIS, CV, *dc* polarization.
- O4. To get acquainted with data interpretation.

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Торіс	Number of	Form of classes
		hours	
1	Corrosion. Basic polarization techniques in corrosion	2	lecture
	prediction. Principles and theory.		
2	Basic polarization techniques in corrosion prediction.	2	laboratory
	Setup and exemplary measurements.		
3	Electrochemical impedance spectroscopy (EIS). Theory.	2	lecture

Wrocław University of Science and Technology Doctoral School

4	Electrochemical impedance spectroscopy (EIS). Setup, measurement, spectra fitting and interpretation.	2	laboratory
5	Voltammetry. Theory and application.	2	lecture
6	Rotating disk electrode (RDE) in electrochemical measurements.	2	lecture
7	Voltammetry and rotating disk electrode (RDE) in practical application.	2	laboratory
8	Exam	1	lecture

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

- 1. Basics of materials science.
- 2. Fundamentals of electrochemistry. Galvanic cell. Potential. Redox reactions.
- 3. Basics of corrosion science.

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access	
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify, formulate and innovatively solve complex problems or perform research tasks, in particular:	Ø
	 define the purpose and subject of scientific research, formulate a research hypothesis, 	
	 develop research methods, techniques and tools, and use them creatively, draw conclusions on the basis of scientific research; 	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development; transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active	

Wrocław University of Science and Technology Doctoral School

		1
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	\boxtimes
SzD_U6	be able to speak a foreign language at B2 level of the Common European Framework of Reference for Languages to a level that enables them to participate in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity, including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest activities, thinking and acting in an entrepreneurial way;	
SzD_K4	 maintaining and developing the ethos of research and creative environments, including: carrying out scientific activities in an independent manner, respecting the principle of public ownership of research results, taking into account the principles of intellectual property protection. 	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

The course will end with a final test including selected questions regarding practical issues discusses within the meetings. Selected practical exercises may require a report including own interpretation of the experiment.

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Author's lecture combined with a laboratory demonstration.

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

[1] Electrochemical Methods: Fundamentals and Applications, 2nd Edition, Allen J. Bard, Larry R. Faulkner. John Wiley & Sons. 1980.

[2] Instrumental Methods in Electrochemistry, 1st Edition - April 1. D Pletcher, R Greff, R Peat, L M Peter, J Robinson. ELLIS HORWOOD LIMITED. Chichester. 2001

[3] <u>https://www.metrohm.com/</u>

[4] https://www.gamry.com/

[5] A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, Springer Science + Business Media. New York. 2014.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)