

COURSE CARD

1. Basic information

Course name in English:	Modern Evolutionary Computation			
Course name in Polish:	Nowoczesne Obliczenia Ewolucyjne			
Number of hours:	30			
Type of course:	Elective course			
Form of course:	mixed forms (combination of lecture, seminar laboratory)	and		
Code of course:	ITQ100343W/ W04ITT-SD0053W			
Course leader:	Michał Przewoźniczek			
Faculty of the course leader:	W4 Faculty of Information and Communication Technology			
Email address of the course leader:	michal.przewozniczek@pwr.edu.pl			
Scientific discipline(s) assigned to the course (doctoral students	Architecture and urban planning			
	Automation, electronic, and electrical engineering			
representing the marked	Information and communication technology	\boxtimes		
disciplines can participate in the course):	Biomedical engineering			
	Chemical engineering			
	Civil engineering and transport			
	Mechanical engineering			
	Environmental engineering, mining, and energy			
	Mathematics			
	Chemical sciences			
	Physical sciences			
	Management and quality studies			

2. Objectives

C1 Getting the knowledge on the main state-of-the-art trends in the field of Evolutionary Computation

C2 Getting the ability to choose the appropriate optimizer for the optimization problem at hand

C3 Getting the ability to implement chosen metaheuristics efficiently

C4 Getting the ability of critical analysis of the obtained results

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Торіс	Number of hours	Form of classes
1	Drganization classes. Basic optimization methods (lecture)		lecture

Wrocław University of Science and Technology Doctoral School

2	Continuous domains – problem features, optimizers features Continuous domains – how to be effective? Automated optimizer step choice	2	lecture
3	Continuous domains – problem features, optimizers features Continuous domains – how to be effective? Automated optimizer step choice	2	laboratory
4	Statistical analysis in continuous domains	2	lecture
5	Statistical analysis in continuous domains	2	laboratory
6	Genetic Algorithms – basics, parameter influence	2	lecture
7	Gray-box optimization, problem-dedicated techniques	2	lecture
8	Gray-box optimization, problem-dedicated techniques	2	laboratory
9	Population diversity – influence, classical and modern diversity preservation techniques	2	lecture
10	Population diversity – influence, classical and modern	2	laboratory
	diversity preservation techniques		
11	Problem decomposition	2	lecture
12	Problem decomposition	4	laboratory
13	The basics of multi-objective optimization	2	lecture
14	The basics of multi-objective optimization	2	laboratory
15			Select form

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

- 1. Programming skill in C++, C#, or Java
- 2. The working knowledge and understanding of objective-oriented programming

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access	
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	

Wrocław University of Science and Technology Doctoral School

-		
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes
	formulate and innovatively solve complex problems or perform research tasks, in	
	particular:	
	 define the purpose and subject of scientific research, formulate a research hypothesis, 	
	- develop research methods, techniques and tools, and use them creatively,	
	 draw conclusions on the basis of scientific research; 	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active	
	participation in the international scientific community;	_
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	\boxtimes
SzD_U6	be able to speak a foreign language at B2 level of the Common European	
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
0.0.110	the development of others;	_
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
	tools.	
S-D K2	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	
SzD_K4	activities, thinking and acting in an entrepreneurial way; maintaining and developing the ethos of research and creative environments,	
320_14	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	
L		

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

During the course students will create their own optimizers. During the laboratory classes their propositions will be rated according to the knowledge presented on the lectures. The mark will be also dependent on the way students will present the reasoning and intuitions behind their propositions.

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

- N1. Multimedia presentations (for the lecture part of classes)
- N2. Documentation for the programming tasks (the laboratory part of classes)
- N3. The e-learning system for publishing the educational materials

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

- [1] Classes notes
- [2] Arabas J. Wykłady z algorytmów ewolucyjnych
- [3] Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs
- [4] Michalewicz Z., Fogel D.B. How to Solve It: Modern Heuristics, WNT 2006
- [5] Goldberg D. Genetic algorithms in search, optimization, and machine learning

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

English