

# **COURSE CARD**

## 1. Basic information

| Course name in English:                                    | Advanced photonics structures                          |             |  |
|------------------------------------------------------------|--------------------------------------------------------|-------------|--|
| Course name in Polish:                                     | Zaawansowane struktury fotoniki                        |             |  |
| Number of hours:                                           | 30                                                     |             |  |
| Type of course:                                            | Elective course                                        |             |  |
| Form of course:                                            | lecture                                                |             |  |
| Code of course:                                            | AEQ100469W/ W12AEE-SD0165W                             |             |  |
| Course leader:                                             | Damian Pucicki, DSc, PhD, Eng.                         |             |  |
| Faculty of the course leader:                              | W12 Faculty of Electronics, Photonics and Microsystems |             |  |
| Email address of the course leader:                        | Damian.Pucicki@pwr.edu.pl                              |             |  |
| Scientific discipline(s) assigned to                       | Architecture and urban planning                        |             |  |
| the course (doctoral students                              | Automation, electronic, and electrical engineering     | $\boxtimes$ |  |
| representing the marked disciplines can participate in the | Information and communication technology               | $\boxtimes$ |  |
| course):                                                   | Biomedical engineering                                 |             |  |
|                                                            | Chemical engineering                                   |             |  |
|                                                            | Civil engineering and transport                        |             |  |
|                                                            | Mechanical engineering                                 |             |  |
|                                                            | Environmental engineering, mining, and energy          |             |  |
|                                                            | Mathematics                                            |             |  |
|                                                            | Chemical sciences                                      |             |  |
|                                                            | Physical sciences                                      |             |  |
|                                                            | Management and quality studies                         |             |  |

## 2. Objectives

- 1. Familiarizing with the newest technical and technological aspects of advanced semiconductor devices and their working principle.
- 2. Analyse and discussion about actual and developing fields of application advanced optical system.
- 3. Presentation of selected areas of application of advanced photonics, with special emphasis placed on optical communications.
- 4. Presentation of physical fundamentals and technology of contemporary photonic devices.

## 3. Content

Detailed information about the course content, including topics and form of classes.

| No. | Торіс                                                                                                                                                         | Number of<br>hours | Form of classes |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
| 1   | Selected aspects of technology of semiconductor<br>structures (epitaxy): modes and modifications of<br>epitaxial crystal growth, selective epitaxy, epitaxial | 4                  | lecture         |



Wrocław University of Science and Technology Doctoral School

|    |                                                       | 1 | -       |
|----|-------------------------------------------------------|---|---------|
|    | anisotropy, aerotaxy, types of epitaxial quantum      |   |         |
|    | structures, structural characterization.              |   |         |
| 2  | Properties of quantum structures: band and electron   | 4 | lecture |
|    | structure, the mechanism of interaction of light with |   |         |
|    | matter in low-dimensional structures.                 |   |         |
| 3  | Structures, technology and properties of advanced     | 2 | lecture |
|    | optoelectronic devices: technological limitations,    |   |         |
|    | design constraints, electro-optical modulation.       |   |         |
| 4  | Advanced semiconductor light sources and radiation    | 4 | lecture |
|    | detectors.                                            |   |         |
| 5  | Fundamentals of design and technology of advanced     | 2 | lecture |
|    | photonics structures: optical modulators and          |   |         |
|    | multiplexers, photonics integrated circuits.          |   |         |
| 6  | Fundamentals of nonlinear optics: classification and  | 2 | lecture |
|    | description of nonlinear optical phenomena,           |   |         |
|    | application of optical nonlinearities in photonics,   |   |         |
|    | properties and technology of photonic crystals.       |   |         |
| 7  | Photonic crystals: fundamentals and technology.       | 4 | lecture |
| 8  | Modern optical communications: devices and systems.   | 4 | lecture |
| 9  | Silicon photonics                                     | 2 | lecture |
| 10 | Plazmonics                                            | 2 | lecture |
| r  |                                                       | • |         |

## 4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

- 1. Master-level knowledge of physics and mathematics
- 2. Solid state physics

#### **5.** Learning outcomes

*List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).* 

| Symbol | Learning outcome                                                                     |             |
|--------|--------------------------------------------------------------------------------------|-------------|
|        | KNOWLEDGE. Doctoral student knows and understands:                                   |             |
| SzD_W3 | the main trends in the development of the scientific or artistic disciplines covered | $\boxtimes$ |
|        | in the curricula;                                                                    |             |
| SzD_W4 | research methodology;                                                                | $\boxtimes$ |
| SzD_W5 | the rules for the dissemination of scientific results, including in open access      |             |
|        | mode;                                                                                |             |
| SzD_W6 | the fundamental dilemmas of modern civilization;                                     |             |
| SzD_W7 | the legal and ethical conditions of scientific activity;                             |             |
| SzD_W8 | the economic and other relevant conditions of scientific activity;                   |             |



Wrocław University of Science and Technology Doctoral School

| SzD_W9 | basic principles of knowledge transfer to the economic and social spheres and                                                                      | $\boxtimes$ |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|        | commercialisation of results of scientific activity and know-how related to these                                                                  |             |
|        | results.                                                                                                                                           |             |
|        | SKILLS. Doctoral student is able to:                                                                                                               |             |
| SzD_U2 | use knowledge from different fields of science or art to creatively identify,                                                                      | $\boxtimes$ |
|        | formulate and innovatively solve complex problems or perform research tasks, in                                                                    |             |
|        | particular:                                                                                                                                        |             |
|        | <ul> <li>define the purpose and subject of scientific research, formulate a research<br/>hypothesis,</li> </ul>                                    |             |
|        | - develop research methods, techniques and tools, and use them creatively,                                                                         |             |
|        | - draw conclusions on the basis of scientific research;                                                                                            |             |
|        | critically analyse and evaluate the results of scientific research, expertise and                                                                  |             |
|        | other creative work and their contribution to knowledge development;                                                                               |             |
|        | transfer the results of scientific activities to the economic and social spheres;                                                                  |             |
| SzD_U3 | communicate on specialised topics to the extent that they enable an active                                                                         | $\boxtimes$ |
|        | participation in the international scientific community;                                                                                           |             |
| SzD_U4 | disseminate research results, including in popular forms;                                                                                          | $\boxtimes$ |
| SzD_U5 | initiate debates and participate in a scientific discourse;                                                                                        | $\boxtimes$ |
| SzD_U6 | be able to speak a foreign language at B2 level of the Common European                                                                             | $\boxtimes$ |
|        | Framework of Reference for Languages to a level that enables them to participate                                                                   |             |
|        | in the international scientific and professional environment;                                                                                      |             |
| SzD_U7 | plan and implement an individual or collective research or creative activity,                                                                      |             |
|        | including in an international environment;                                                                                                         |             |
| SzD_U8 | independently plan and act for one's own development and inspire and organize                                                                      |             |
|        | the development of others;                                                                                                                         |             |
| SzD_U9 | plan classes or groups of classes and implement them using modern methods and                                                                      |             |
|        | tools.                                                                                                                                             |             |
| S-D V2 | SOCIAL COMPETENCES. Doctoral student is ready to:                                                                                                  |             |
| SzD_K3 | fulfilling the social obligations of researchers and creators, initiate public interest activities, thinking and acting in an entrepreneurial way; | $\boxtimes$ |
| SzD_K4 | maintaining and developing the ethos of research and creative environments,                                                                        |             |
| 32U_N4 | including:                                                                                                                                         |             |
|        | - carrying out scientific activities in an independent manner,                                                                                     |             |
|        | - respecting the principle of public ownership of research results, taking into                                                                    |             |
|        | account the principles of intellectual property protection.                                                                                        |             |
|        |                                                                                                                                                    | 1           |

## 6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

1. Multimedia presentation followed with discussion on the lectures subjects.

2. Test or oral answers

#### 7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.



Wrocław University of Science and Technology Doctoral School

- 1. Thematic lectures supported by the multimedia presentation.
- 2. Discussion on the PhD student chosen topic with preparation of short presentation by the student.
- 3. Consultations

## 8. Literature

*List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.* 

- 1. J. D. Joannopoulos, Photonic crystals: molding the flow of light. Princeton: Princeton University Press, 2008
- 2. M. C. Gupta and J. Ballato, The handbook of photonics. CRC press, 2012

3. D.Pucicki, *Struktury kwantowe w technologii przyrządów półprzewodnikowych*, Oficyna wydawnicza PWr, Wrocław 2017

## 9. Other remarks

Additional remarks, comments, (e.g., language of the course)