

COURSE CARD

1. Basic information

Course name in English:	Bioclimatic architecture	
Course name in Polish:	Architektura bioklimatyczna	
Number of hours:	30	
Type of course:	Elective course	
Form of course:	lecture	
Code of course:	AUQ100298W/W01ARU-SD0010W	
Course leader:	Dr hab. inż. arch. Barbara Widera	
Faculty of the course leader:	W1 Faculty of Architecture	
Email address of the course leader:	barbara.widera@pwr.edu.pl	
Scientific discipline(s) assigned to	Architecture and urban planning	\boxtimes
the course (doctoral students	Automation, electronic, and electrical engineering	
representing the marked disciplines can participate in the	Information and communication technology	
course):	Biomedical engineering	
	Chemical engineering	
	Civil engineering and transport	X
	Mechanical engineering	
	Environmental engineering, mining, and energy	\boxtimes
	Mathematics	
	Chemical sciences	
	Physical sciences	
	Management and quality studies	

2. Objectives

To make students familiar with the latest developments in contemporary architecture with the special focus on bioclimatic and environmental strategies.

To help students to develop the ability and habit of analysing theories and practical solutions concerning contemporary architecture, in particular the ones related to the energy efficiency, regenerative design and climate change resilience.

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Topic	Number of	Form of classes
		hours	
1	Cultural environment in the context of sustainable development	2	lecture
2	Introduction to ecological and bioclimatic architecture	2	lecture
3	Lessons from vernacular architecture	2	lecture

4	Passive and nZEB architecture	2	lecture
5	Renewable energy sources and energy storage in building	2	lecture
6	Various aspects of user comfort in building, thermal comfort analysis	2	lecture
7	Nature-based solutions in the context of the Green Deal and climate change resilience	2	lecture
8	Energy efficiency in buildings, end-user engagement, POE	2	lecture
9	Environmental strategies in bioclimatic architecture	2	lecture
10	Multi-level ecosystem analyzes, integration of the building with its surroundings	2	lecture
11	Green facades and vertical gardens	2	lecture
12	Biomimetics in architecture	2	lecture
13	Dynamic shading systems, kinetic facades	2	lecture
14	Bioclimatic and biological architecture - development directions	2	lecture
15	Evaluation and presentation of an individually developed topic	1	lecture

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

General orientation on the current state of knowledge and the latest development trends in contemporary ecological architecture.

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access	
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	\boxtimes
SzD_W7	the legal and ethical conditions of scientific activity;	\boxtimes
SzD_W8	the economic and other relevant conditions of scientific activity;	⊠
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	

SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes
	formulate and innovatively solve complex problems or perform research tasks, in	
	particular:	
	- define the purpose and subject of scientific research, formulate a research	
	hypothesis,	
	- develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active	\boxtimes
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	\boxtimes
SzD_U6	be able to speak a foreign language at B2 level of the Common European	
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	\boxtimes
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Evaluation based on the activity and participation in didactic discussions during classe. Each participant prepares a brief (5-10 slides) presentation related to the selected topic from the lecture list.

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Lecture, Power Point presentation, didactic discussion

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

- [1] Almusaed A., Biophilic and Bioclimatic Architecture: Analytical Therapy for the Next Generation of Passive Sustainable Architecture, Springer Science & Business Media, 2010
- [2] Košir M., Climate Adaptability of Buildings: Bioclimatic Design in the Light of Climate Change Springer, 2019
- [3] Widera B., Proces kształtowania relacji z naturą w architekturze współczesnej, Wrocław 2018
- [4] Wilkinson, S.J., Remøy H., Langston C., Sustainable Building Adaptation: Innovations in Decision-making, John Wiley & Sons, 2014
- [5] Wines J., Zielona architektura, Taschen, Koln 2008
- [6] Bar-Cohen, Y., Biomimetics: Biologically Inspired Technologies, London 2005.
- [7] Chan, Y., Sustainable Environments, Gloucester 2007.
- [8] Gissen D., Big and Green: Toward Sustainable Architecture in the 21st Century, Princeton Architectural Press, 2002
- [9] Guedes M.C., Cantuaria G. Bioclimatic Architecture in Warm Climates: A Guide for Best Practices in Africa, Springer, 2019
- [10] Roaf S., Susan Roaf S., Crichton D., Nicol F., Adapting Buildings and Cities for Climate Change: A 21st Century Survival Guide, Routledge, 2005
- [11] Yeang, K., EcoMasterplanning, Chichester 2009.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

Course in English language