

COURSE CARD

1. Basic information

Course name in English:	Introduction to Quantum Mechanics	
Course name in Polish:	Wprowadzenie do mechaniki kwantowej	
Number of hours:	30	
Type of course:	Elective course	
Form of course:	lecture	
Code of course:	NFQ100375W/ W11NAF-SD0075W	
Course leader:	Dr hab. Paweł Gusin	
Faculty of the course leader:	W11 Faculty of Fundamental Problems of Technology	
Email address of the course leader:	pawel.gusin@pwr.edu.pl	
Scientific discipline(s) assigned to	Architecture and urban planning	
the course (doctoral students representing the marked disciplines can participate in the course):	Automation, electronic, and electrical engineering	
	Information and communication technology	
	Biomedical engineering	
	Chemical engineering	
	Civil engineering and transport	
	Mechanical engineering	
	Environmental engineering, mining, and energy	
	Mathematics	
	Chemical sciences	
	Physical sciences	Х
	Management and quality studies	

2. Objectives

Solutions of "simply" problems in quantum physics (no problem in quantum mechanics is simply).

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Topic	Number of	Form of classes
		hours	
1	Introduction. Classical and Quantum Mechanics.	2	lecture
	General look. Rules of quantization.		
2	Schrödinger equation and wave function in one	2	lecture
	dimension		
3	Time independent Schrödinger equation, stationary	2	lecture
	states. The free particle.		
4	The harmonic oscillator	2	lecture
5	The Hilbert space formalism	2	lecture

6	The potential well	2	lecture
7	Tunneling through a potential barrier		lecture
8	The uncertainty principle		lecture
9	Quantum mechanics in three dimensions. Angular	2	lecture
	momentum.		
10	The hydrogen atom (I)	2	lecture
11	The hydrogen atom (II)	2	lecture
12	Spin	2	lecture
13	Identical particles. Quantum statistics.	2	lecture
14	The WKB approximation	2	lecture
15	Quantum physics and "classical" world	2	lecture

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

Classical mechanics in terms of phase space, differentiation and integration.

5. Learning outcomes

List of learning outcomesat level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	Х
	in the curricula;	
SzD_W4	research methodology;	Х
SzD_W5	the rules for the dissemination of scientific results, including in open access	
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify, formulate and innovatively solve complex problems or perform research tasks, in particular:	х
	 define the purpose and subject of scientific research, formulate a research hypothesis, 	
	 develop research methods, techniques and tools, and use them creatively, draw conclusions on the basis of scientific research; 	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	

	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active	
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	Х
SzD_U5	initiate debates and participate in a scientific discourse;	
SzD_U6	be able to speak a foreign language at B2 level of the Common European	
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	X
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Exam

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Presentation and discussion.

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

- 1. D. J. Griffiths: Introduction to Quantum Mechanics, Pearson Education Inc. 2005
- 2. L. I. Schiff, Mechanika kwantowa, PWN 1977
- 3. S. Weinberg, Lectures on Quantum Mechanics, Cambridge 2015

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

