

COURSE CARD

1. Basic information

Course name in English:	Chemical methods in environmental engineering		
Course name in Polish:	Metody chemiczne w inżynierii Środowiska		
Number of hours:	30		
Type of course:	Elective course		
Form of course:	mixed forms (combination of lecture, seminar laboratory)	and	
Code of course:			
Course leader:	PhD. DSc. Eng. Anna Dzimitrowicz, prof. WUST		
Faculty of the course leader:	W3 Faculty of Chemistry		
Email address of the course leader:	anna.dzimitrowicz@pwr.edu.pl		
Scientific discipline(s) assigned to	Architecture and urban planning		
the course (doctoral students representing the marked disciplines can participate in the course):	Automation, electronic, electrical engineering and space technologies		
	Information and communication technology		
	Biomedical engineering		
	Chemical engineering	\boxtimes	
	Civil engineering, geodesy and transport		
	Materials engineering		
	Mechanical engineering		
	Environmental engineering, mining, and energy	\boxtimes	
	Mathematics		
	Chemical sciences	\boxtimes	
	Physical sciences		
	Management and quality studies		

2. Objectives

PhD students, after completing this course, will gain knowledge related to:

O1. Possessing a comprehensive understanding of the fundamental components of the environment.

O2. Identifying major environmental contaminants and the chemical methods used for their removal.

O3. Selecting appropriate technique for chemical environmental analyses.

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Торіс	Number of hours	Form of classes
1	1 Introduction to Environmental Chemistry - 4 hours (Lecture)		lecture

Wrocław University of Science and Technology Doctoral School

2	Chemical Methods in Environmental Analysis – 5 hours (Lecture)	5	lecture
3	Chemical Methods in Environmental Purification - 4 hours (Lecture)	4	lecture
4	Summary – Oxford-Style Debate – 2 hours (Lecture)	2	lecture
5	Application of Advanced Oxidation Processes in synthetic wastewater purification – 4 hours (Laboratory)	2	laboratory
6	Use of TOC/TN Analysis for determining the concentrations of Total Organic Carbon (TOC) and Total Nitrogen (TN) in unpurified and purified synthetic wastewater samples – 3 hours (Laboratory)	2	laboratory
7	Ecotoxicity assessment of unpurified and purified synthetic wastewaters samples – ECOSAR Analysis – 5 hours (Laboratory)	2	laboratory
8	Ecotoxicity assessment of unpurified and purified synthetic eastewaters samples –seed germination- 3 hours (Laboratory)	1	laboratory

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

- 1. Basic knowledge in chemical science, chemical engineering, and environmental engineering
- 2. Basic knowledge in analytical chemistry and inorganic chemistry

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	
	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	

Wrocław University of Science and Technology Doctoral School

SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes
	formulate and innovatively solve complex problems or perform research tasks, in	
	particular:	
	 define the purpose and subject of scientific research, formulate a research hypothesis, 	
	- develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	
SzD_U6	be able to speak a foreign language at B2 level of the Common European	
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments, including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

For the lecture evaluation: there will be case study to discuss.For the laboratory: there will be one report to prepare.Final grade will be made based on the average grade from the lecture and laboratory.

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Lectures, presentations, laboratory, discussion, practical teaching, case studies

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

[1] Anielak, A. M. (2017). Jeremi Naumczyk: Chemia Środowiska.

[2] Barceló, D. (1993). Environmental Protection Agency and other methods for the determination of priority pesticides and their transformation products in water. Journal of Chromatography A, 643(1-2), 117.

[3] Deng, Y., & Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current pollution reports, 1(3), 167.

[4] Stasinakis, A. S. (2008). Use of selected advanced oxidation processes (AOPs) for wastewater treatment–a mini review. Global NEST journal, 10(3), 376.

[5] Cyganowski, P., Terefinko, D., Motyka-Pomagruk, A., Babinska-Wensierska, W., Khan, M. A., Klis, T.,
... & Dzimitrowicz, A. (2024). The potential of cold atmospheric pressure plasmas for the direct degradation of organic pollutants derived from the food production industry. Molecules, 29(12), 2910.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

Course will be conducted in English.