

# **COURSE CARD**

# 1. Basic information

| Course name in English:                                                                                 | Space technologies and space resources                  |     |  |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----|--|
| Course name in Polish:                                                                                  | Technologie przemysłu kosmicznego i zasoby pozaziemskie |     |  |
| Number of hours:                                                                                        | 15                                                      |     |  |
| Type of course:                                                                                         | Elective course                                         |     |  |
| Form of course:                                                                                         | mixed forms (combnation of lecture, seminar laboratory) | and |  |
| Code of course:                                                                                         |                                                         |     |  |
| Course leader:                                                                                          | dr hab. inż. Damian Pietrusiak                          |     |  |
| Faculty of the course leader:                                                                           | W10 Faculty of Mechanical Engineering                   |     |  |
| Email address of the course leader:                                                                     | damian.pietrusiak@pwr.edu.pl                            |     |  |
| Scientific discipline(s) assigned to                                                                    | Architecture and urban planning                         |     |  |
| the course (doctoral students<br>representing the marked disciplines<br>can participate in the course): | Automation, electronic, and electrical engineering      |     |  |
|                                                                                                         | Information and communication technology                |     |  |
|                                                                                                         | Biomedical engineering                                  |     |  |
|                                                                                                         | Chemical engineering                                    |     |  |
|                                                                                                         | Civil engineering and transport                         |     |  |
|                                                                                                         | Mechanical engineering                                  |     |  |
|                                                                                                         | Environmental engineering, mining, and energy           |     |  |
|                                                                                                         | Mathematics                                             |     |  |
|                                                                                                         | Chemical sciences                                       |     |  |
|                                                                                                         | Physical sciences                                       |     |  |
|                                                                                                         | Management and quality studies                          |     |  |

## 2. Objectives

- I. New Space ability to describe recent trends in the development of the space technologies
- II. Space applications ability to identify space related technologies, its origin and possible terrestrial and extraterrestrial application
- III. Space resources ability to describe space resources and related technologies



Wrocław University of Science and Technology Doctoral School

| No. | Торіс                                                                   | Number of | Form of classes |
|-----|-------------------------------------------------------------------------|-----------|-----------------|
|     |                                                                         | hours     |                 |
| 1   | Introduction                                                            | 1         | lecture         |
| 2   | Space environment                                                       | 2         | lecture         |
| 3   | Space missions – directions, objectives and required technologies       | 2         | lecture         |
| 4   | Space resources – identification of resources and required technologies | 2         | lecture         |
| 5   | New Space – definitions and key concept identification                  | 2         | lecture         |
| 6   | Space applications - space related technologies and its                 | 2         | lecture         |
|     | terrestrial and extraterrestrial application                            |           |                 |
| 7   | Students presentation                                                   | 2         | seminar         |
| 8   | Students presentation                                                   | 2         | seminar         |
| 9   |                                                                         |           | Select form     |
| 10  |                                                                         |           | Select form     |
| 11  |                                                                         |           | Select form     |
| 12  |                                                                         |           | Select form     |
| 13  |                                                                         |           | Select form     |
| 14  |                                                                         |           | Select form     |
| 15  |                                                                         |           | Select form     |

## 4. Prerequisites

*List of prerequisites relating to knowledge, skills and other competences for course participants.* 

• General knowledge in the field of individual expertise/discipline

#### 5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

| Symbol | Learning outcome                                                                      |             |
|--------|---------------------------------------------------------------------------------------|-------------|
|        | KNOWLEDGE. Doctoral student knows and understands:                                    |             |
| SzD_W3 | the main trends in the development of the scientific or artistic disciplines covered  | $\boxtimes$ |
|        | in the curricula;                                                                     |             |
| SzD_W4 | research methodology;                                                                 | ⊠           |
| SzD_W5 | the rules for the dissemination of scientific results, including in open access mode; |             |
| SzD_W6 | the fundamental dilemmas of modern civilization;                                      |             |
| SzD_W7 | the legal and ethical conditions of scientific activity;                              |             |
| SzD_W8 | the economic and other relevant conditions of scientific activity;                    |             |



Wrocław University of Science and Technology Doctoral School

| SzD_W9  | basic principles of knowledge transfer to the economic and social spheres and                                                                              | $\boxtimes$ |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
|         | commercialisation of results of scientific activity and know-how related to these                                                                          |             |  |  |
|         | results.                                                                                                                                                   |             |  |  |
|         | SKILLS. Doctoral student is able to:                                                                                                                       |             |  |  |
| SzD_U2  | use knowledge from different fields of science or art to creatively identify,                                                                              |             |  |  |
| _       | formulate and innovatively solve complex problems or perform research tasks, in                                                                            |             |  |  |
|         | particular:                                                                                                                                                |             |  |  |
|         | <ul> <li>define the purpose and subject of scientific research, formulate a research<br/>hypothesis,</li> </ul>                                            |             |  |  |
|         | - develop research methods, techniques and tools, and use them creatively,                                                                                 |             |  |  |
|         | - draw conclusions on the basis of scientific research;                                                                                                    |             |  |  |
|         | critically analyse and evaluate the results of scientific research, expertise and                                                                          |             |  |  |
|         | other creative work and their contribution to knowledge development;                                                                                       |             |  |  |
| 6-0.112 | transfer the results of scientific activities to the economic and social spheres;                                                                          |             |  |  |
| SzD_U3  | communicate on specialised topics to the extent that they enable an active participation in the international scientific community;                        | $\boxtimes$ |  |  |
| SzD_U4  | disseminate research results, including in popular forms;                                                                                                  |             |  |  |
| SzD_U5  | initiate debates and participate in a scientific discourse;                                                                                                |             |  |  |
| SzD_U6  | be able to speak a foreign language at B2 level of the Common European<br>Framework of Reference for Languages to a level that enables them to participate |             |  |  |
|         | in the international scientific and professional environment;                                                                                              |             |  |  |
| SzD_U7  | plan and implement an individual or collective research or creative activity, including in an international environment;                                   |             |  |  |
| SzD_U8  | independently plan and act for one's own development and inspire and organize the development of others;                                                   |             |  |  |
| SzD_U9  | plan classes or groups of classes and implement them using modern methods and tools.                                                                       |             |  |  |
|         | SOCIAL COMPETENCES. Doctoral student is ready to:                                                                                                          |             |  |  |
| SzD_K3  | fulfilling the social obligations of researchers and creators, initiate public interest                                                                    |             |  |  |
|         | activities, thinking and acting in an entrepreneurial way;                                                                                                 |             |  |  |
| SzD_K4  | maintaining and developing the ethos of research and creative environments,                                                                                |             |  |  |
|         | including:                                                                                                                                                 |             |  |  |
|         | - carrying out scientific activities in an independent manner,                                                                                             |             |  |  |
|         | - respecting the principle of public ownership of research results, taking into                                                                            |             |  |  |
|         | account the principles of intellectual property protection.                                                                                                |             |  |  |

# 6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

• During final class each student will give individual talk presenting recent space related technologies in their discipline – topics will be defined during semester with the assistance of tutor.



# 7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

- Multimedia presentation
- Problem based learning
- Jigsaw

:

- Debate
- Socratic method
- Metacognitive questions
- Peer tutoring

## 8. Literature

*List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.* 

- Natural Resources Canada, Tutorial: Fundamentals of Remote Sensing, 2015. http://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-air-photos/satellite-imag eryproducts/educational-resources/9309
- 2. Dator, J., 2011. Futures Studies. In: W.S. Bainbridge, Ed. Leadership in Science and Technology. Thousand Oaks, CA
- 3. Wertz JR and Larson WJ (eds.), Space Mission Analysis and Design (3rd Edition), Microcosm Press/Kluwer Academic Publishers, 1999, ISBN-13: 978-1881883104
- 4. Ryschkewitsch, Schaible and Larson, The Art and Science of System Engineering, 1999, NASA
- 5. Garvin, JB. The science behind the vision for U.S. space exploration: the value of a human–robotic partnership. Earth Moon Planets
- Thirsk, R., A. Kuipers, C. Mukai and D. Williams. The space-flight environment: the International Space Station and beyond. Canadian Medical Association Journal 180(12): 1216-20 (2009)

## 9. Other remarks

Additional remarks, comments, (e.g., language of the course)

Class language: English