

COURSE CARD

1. Basic information

Course name in English:	Artificial Inventiveness for engineers	
Course name in Polish:	Inteligentna wynalazczość dla inżynierów	
Number of hours:	15	
Type of course:	Elective course	
Form of course:	Laboratory	
Code of course:		
Course leader:	Marek Mysior PhD	
Faculty of the course leader:	(W10) Mechanical Faculty	
Email address of the course leader:	marek.mysior@pwr.edu.pl	
Scientific discipline(s) assigned to	Architecture and urban planning	\boxtimes
the course (doctoral students representing the marked disciplines	Automation, electronic, electrical engineering and space technologies	X
can participate in the course):	Information and communication technology	X
	Biomedical engineering	\boxtimes
	Chemical engineering	\boxtimes
	Civil engineering, geodesy and transport	⊠
	Materials engineering	
	Mechanical engineering	
	Environmental engineering, mining, and energy	\boxtimes
	Mathematics	\boxtimes
	Chemical sciences	⊠
	Physical sciences	\boxtimes
	Management and quality studies	\boxtimes

2. Objectives

- C1. To gain basic knowledge related to inventive problem-solving methods and techniques.
- C2. To gain skills in applying AI in inventive problem-solving.
- C3. To gain skills in developing frameworks and chains for inventive problem-solving using AI.
- C5. To gain up-to-date knowledge about applications of AI in inventive problem solving.

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Topic	Number of hours	Form of classes
1	Introduction to Systematic Innovation Methods. Al applications in inventive problem-solving.	1	Lecture
2	TRIZ Fundamentals.	2	Lecture
3	Applications of AI in Systematic Innovation. Discussion on tools, methods, and algorithms.	2	Lecture
4	Prompt Engineering in Systematic Innovation.	2	Lecture
5	Parallel Coding Class 1: Working with Large Language Models in Python	2	Laboratory
6	Parallel Coding Class 2: Information extraction using conversational LLMs	2	Laboratory
7	Parallel Coding Class 3: Solving contradictions using NLP	2	Laboratory
8	Parallel Coding Class 4: Concept development and evaluation using AI	2	Laboratory

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

- 1. Basic knowledge in mathematics and statistics.
- 2. Basic computer skills.
- 3. General knowledge in related fields of Engineering at the second level of studies

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	⊠
SzD_W5	the rules for the dissemination of scientific results, including in open access mode;	×
SzD_W6	the fundamental dilemmas of modern civilization;	⊠
SzD_W7	the legal and ethical conditions of scientific activity;	\boxtimes
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	

	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify, formulate and innovatively solve complex problems or perform research tasks, in particular: - define the purpose and subject of scientific research, formulate a research hypothesis, - develop research methods, techniques and tools, and use them creatively, - draw conclusions on the basis of scientific research; critically analyse and evaluate the results of scientific research, expertise and other creative work and their contribution to knowledge development; transfer the results of scientific activities to the economic and social spheres;	⊠
SzD_U3	communicate on specialised topics to the extent that they enable an active participation in the international scientific community;	⊠
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	\boxtimes
SzD_U6	be able to speak a foreign language at B2 level of the Common European Framework of Reference for Languages to a level that enables them to participate in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity, including in an international environment;	×
SzD_U8	independently plan and act for one's own development and inspire and organize the development of others;	⊠
SzD_U9	plan classes or groups of classes and implement them using modern methods and tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest activities, thinking and acting in an entrepreneurial way;	\boxtimes
SzD_K4	maintaining and developing the ethos of research and creative environments, including: - carrying out scientific activities in an independent manner, - respecting the principle of public ownership of research results, taking into account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Evaluation is based on PhD student's submitted work from Parallel Coding Classes.

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

- N1. Lecture
- N2. Presentation
- N3. Discussion
- N4. Self-work

N5. Parallel coding with the teacher

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

- 1. L. Haines-Gadd, TRIZ For Dummies. Wiley, 2016.
- 2. G. S. Altschuller, **The Innovation Algorithm. TRIZ, Systematic Innovation and Technical Creativity**, II. Worcester: Technical Innovation Center, Inc., 2007.
- 3. Lutz, Mark. Learning Python, 5th Edition. Fifth edition. Beijing: O'Reilly Media, 2013.
- 4. Matthes, Eric. **Python Crash Course**, 3rd Edition: A Hands-On, Project-Based Introduction to Programming. 3rd edition. San Francisco: No Starch Press, 2023.
- Ghane, Mostafa, Mei Choo Ang, Denis Cavallucci, Rabiah Abdul Kadir, Kok Weng Ng, i Shahryar Sorooshian. 2024. "Semantic TRIZ feasibility in technology development, innovation, and production: A systematic review". Heliyon 10 (1): e23775. https://doi.org/10.1016/j.heliyon.2023.e23775.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

Parallel Coding Lectures are performed using Python.