

COURSE CARD

1. Basic information

Course name in English:	Supramolecular Photochemistry	
Course name in Polish:	Fotochemia supramolekularna	
Number of hours:	30	
Type of course:	Elective course	
Form of course:	lecture	
Code of course:		
Course leader:	Dr. Inz. Marco Deiana	
Faculty of the course leader:	W3 Faculty of Chemistry	
Email address of the course leader:	m.deiana@pwr.edu.pl	
Scientific discipline(s) assigned to	Architecture and urban planning	
the course (doctoral students	Automation, electronic, electrical engineering and	
representing the marked disciplines can participate in the course):	space technologies	
	Information and communication technology	
	Biomedical engineering	\boxtimes
	Chemical engineering	\square
	Civil engineering, geodesy and transport	
	Materials engineering	\square
	Mechanical engineering	
	Environmental engineering, mining, and energy	
	Mathematics	
	Chemical sciences	\boxtimes
	Physical sciences	
	Management and quality studies	

2. Objectives

O1. To acquaint students with modern concepts of supramolecular chemistry and their impact on molecular organization, emission behavior, and functional material design.

O2. Acquiring the ability to understand and analyze photophysical phenomena such as aggregation-induced emission (AIE), aggregation-induced quenching (ACQ), disaggregation-induced emission (DIE), and excitonic interactions in supramolecular systems.

O3. Developing competence in quantitative analysis of molecular recognition and binding using spectroscopic techniques.

O4. Gaining insight into the principles of phototherapy (photodynamic and photothermal therapies) and supramolecular drug delivery, including the design of light-activated therapeutic systems and responsive molecular carriers.

O5. Enhancing literature comprehension and communication skills through critical analysis and individual project presentations.

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Торіс	Number of hours	Form of classes
1	 Supramolecular Foundations Host–guest chemistry: crown ethers, cyclodextrins, calixarenes, cucurbiturils Molecular recognition: thermodynamics and cooperativity Supramolecular recognition in sensing 	2	lecture
2	 Binding Analysis and Quantification Analysis of supramolecular assemblies by spectroscopic methods Binding models: 1:1, 2:1, 1:2 Simulation of binding parameters by non-linear fitting procedures 	2	lecture
3	 Photophysical and Excitonic Behavior Photophysical origin of quenching Exciton theory: H-aggregates, J-aggregates, spectral shifts H-aggregates and J-aggregates morphological characterization H-aggregates and J-aggregates in sensing and imaging 	2	lecture
4	 Aggregation-Caused Quenching (ACQ) Photophysical origin and mechanistic understanding of ACQ Influence of aggregation on fluorescence in biomolecular environments Strategies to suppress or control ACQ in sensor design and drug carriers 	2	lecture
5	 Aggregation-Induced Emission (AIE) Design principles of AIE-active molecules: neutral versus charged groups Mechanisms: restriction of intramolecular motion (RIM) Applications as stimuli-responsive materials 	2	lecture
6	Disaggregation-Induced Emission (DIE)	2	lecture

Wrocław University of Science and Technology

Doctoral School

	 Concept and use of DIE in "turn-on/off" 		
	 Design of self-assembling/disassembling fluorogenic probes 		
	 Case studies in cellular DNA, protein and lipid sensing 		
7	 Supramolecular Imaging and Diagnostics AIE and DIE based host–guest systems for biological imaging Cell permeability, organelle and molecular targeting 	2	lecture
8	 Supramolecular Phototherapy Principles – Part I (Photodynamic Therapy, PDT) Reactive oxygen species (ROS) generation Type I and Type II photodynamic mechanisms Light-responsive toxicity in cancer therapy 	2	lecture
9	 Supramolecular Phototherapy Principles – Part II (Photothermal Therapy, PTT) Principles of photothermal conversion and heat-induced cytotoxicity Supramolecular nanostructures as photothermal agents Combined PDT/PTT strategies and synergistic effects in cancer therapy 	2	lecture
10	Supramolecular Strategies for NIR TherapeuticPerformance:• Biological Activation Windows:NIR-I (650–950 nm) and NIR-II (1000–1700 nm)• Molecular strategies to tailor dyes for NIR-I and NIR-II emission:Extending π-conjugation, donor–acceptor (D–A) engineering, heteroatom substitution, supramolecular encapsulation and assembly	2	lecture
11	 Supramolecular Drug Delivery Self-assembled nanocarriers: micelles, vesicles, cages Triggered drug release: pH, redox, and light-activated systems 	2	lecture
12	 Supramolecular Theranostics Dual sensor-therapy platforms (imaging + treatment) 	2	lecture

Wrocław University of Science and Technology

Doctoral School

	 Combination systems: PTT + chemotherapy, PDT + drug delivery 		
13	 Molecular Targeting in Supramolecular Therapy G-quadruplexes (G4s) as molecular targets Supramolecular strategies for targeting, sensing, and imaging overexpressed cancer-associated G4 DNA structures Design of supramolecular systems for structure-specific oxidative DNA damage induction Applications in <i>in cellulo</i> and <i>in vivo</i> cancer models 	2	lecture
14	 Emerging Trends and Future Directions Stimuli-responsive and adaptive supramolecular systems Reversible, self-healing, and programmable materials for soft robotics, electronics, and tissue engineering. Design of molecular machines, switchable nanosystems, and logic-based therapeutic delivery platforms. Machine learning and AI-assisted design of supramolecular systems 	2	lecture
15	 Student Seminar & Discussion Session Short student presentations on literature-selected supramolecular sensors/therapeutics. 	2	lecture

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

- 1. Basic Organic Chemistry
- 2. General Physical Chemistry
- 3. Spectroscopy Fundamentals

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	

Wrocław University of Science and Technology Doctoral School

SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	
_	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes
	formulate and innovatively solve complex problems or perform research tasks, in particular:	
	 define the purpose and subject of scientific research, formulate a research hypothesis, 	
	- develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
SzD_U3	transfer the results of scientific activities to the economic and social spheres;	
320_03	communicate on specialised topics to the extent that they enable an active participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	
 SzD_U6	be able to speak a foreign language at B2 level of the Common European	
520_00	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
	tools. SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD K3	fulfilling the social obligations of researchers and creators, initiate public interest	
525-13	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	
_	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Oral presentation on a selected topic

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

• Blackboard lectures • Multimedia presentations • Group discussions • Quantitative problem-solving sessions • Individual student work and critical literature analysis

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

Primary and Secondary Literature

- 1. Jonathan W. Steed and Jerry L. Atwood. Title: Supramolecular Chemistry
- 2. Joseph R. Lakowicz. Title: Principles of Fluorescence Spectroscopy.
- 3. Vincenzo Balzani, Paola Ceroni and Alberto Juris. Title: Photochemistry and Photophysics: Concepts, Research, Applications

Current scientific articles related to the subjects (examples):

- 1. Chem. Rev., 2015, 115, 15, 7794–7839
- 2. Chem. Rev., 2015, 115, 21, 11718–11940
- 3. Chem. Rev., 2018, 118, 15, 7069–7163
- 4. ACS Nano, 2023, 17, 15, 14347–14405
- 5. Nanoscale Horiz., 2024, 9, 1390–1416
- 6. Cell Chem. Biol., 2019, 26, 600-614
- 7. J. Med. Chem. 2020, 63, 5, 1996–2012
- 8. Chem. Rev. 2022, 122, 1, 209-268

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

This interdisciplinary course, rooted in supramolecular chemistry and photophysics, provides an in-depth exploration of how molecular assemblies and non-covalent interactions govern emission behavior, sensing, and therapeutic function. Emphasis is placed on aggregation-induced emission (AIE), aggregation-caused quenching (ACQ), disaggregation-induced emission (DIE), host–guest systems, exciton theory, and quantitative binding analysis.

The course also covers phototherapeutic principles, including light-activated drug release, ROS generation, and supramolecular strategies for drug delivery, highlighting their emerging relevance in cancer and precision medicine.

It is designed for PhD students with interests in chemical biology, nanotechnology, photochemistry, materials science, and biomedical applications.