

COURSE CARD

1. Basic information

Course name in English:	Intelligent Diagnostic Systems		
Course name in Polish:	Inteligentne Systemy Diagnostyczne		
Number of hours:	15		
Type of course:	Elective course		
Form of course:	mixed forms (combination of lecture, seminar laboratory)	and	
Code of course:			
Course leader:	Dr. Hab. inż. Aleksandra Kawala-Sterniuk		
Faculty of the course leader:	W4 Faculty of Information and Communication Technology		
Email address of the course leader:	aleksandra.kawala-sterniuk@pwr.edu.pl		
Scientific discipline(s) assigned to the course (doctoral students representing the marked disciplines can participate in the course):	Architecture and urban planning		
	Automation, electronic, electrical engineering and space technologies		
	Information and communication technology	\boxtimes	
	Biomedical engineering	×	
	Chemical engineering		
	Civil engineering, geodesy and transport		
	Materials engineering		
	Mechanical engineering		
	Environmental engineering, mining, and energy		
	Mathematics	\boxtimes	
	Chemical sciences		
	Physical sciences		
	Management and quality studies		

2. Objectives

This course introduces the core principles and practical methodologies behind intelligent diagnostic systems, with a special focus on electroencephalography (EEG) and the use of open datasets. PhD candidates will explore signal processing, machine learning models, and real-world diagnostic applications. The course combines lectures, code-based labs, and seminar-style critical discussions on recent papers and research outcomes.

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Topic	Number of hours	Form of classes
1	Introduction to Intelligent Diagnostic Systems	1	lecture

2	Biomedical data acquisition and preprocessing	1	lecture
3	Open data repositories	1	laboratory
4	Biomedical data acquisition and preprocessing -	2	laboratory
	practice		
5	Data processing methods	2	laboratory
6	Modern diagnostic systems	1	lecture
7	Discussion on the most recent research	1	seminar
8	Work on independent tasks/projects	5	project
9	Final projects presentations	2	seminar

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

Doctoral students should have foundational knowledge in at least two of the following areas:

- 1.Biomedical signal processing or neurophysiology;
- 2. Machine learning or statistical modelling;
- 3. Programming in Python or MATLAB.

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes
	formulate and innovatively solve complex problems or perform research tasks, in	
	particular:	
	 define the purpose and subject of scientific research, formulate a research hypothesis, 	
	- develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	

	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active	\boxtimes
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	☒
SzD_U5	initiate debates and participate in a scientific discourse;	×
SzD_U6	be able to speak a foreign language at B2 level of the Common European	
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	\boxtimes
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	\boxtimes
	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	\boxtimes
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

The learning outcomes will be evaluated with the report and presentation of the project's outcomes.

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Teaching methods will be combined involving multimedia presentation, discussion, seminars and laboratory work.

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

- [1] Heys, J. J. (2023). *Chemical and biomedical engineering calculations using Python* (2nd ed.). Elsevier.
- [2] https://home.agh.edu.pl/~horzyk/lectures/ai/SI-DeepLearning-Python.pdf
- [3] Steinkamp, V. (2024). Python for engineering and scientific computing. SAP Press.

[4] VanderPlas, J. (2023). Python Data Science: Niezbędne narzędzia do pracy z danymi. Helion.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

Language of the course - English