DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

SUPERVISOR/TEAM/ DECLARING/CONDUCTING COURSE: Katarzyna Matczyszyn DEPARTMENT: Chemical Department SCIENTIFIC DISCIPLINE:, Chemical Sciences

COURSE CARD

Course name in Polish Interdyscyplinarne seminarium o nowych materiałach II Course name in English: Interdisciplinary seminar on new materials Course language Polish / English* University-wide general course type*: The course is intended for all PhD students: YES / NO 1) BASIC COURSE 2) SPECIALIST COURSE 3) SEMINAR 4) HUMANISTIC COURSE 5) LANGUAGE

Subject code: NCQ100119S

* delete as applicable

	Lecture	Foreign language course	Seminar	Mixed forms
Number of hours of organized classes in university (ZZU)			15	
Grading	Exam	Exam	Oral presentation	Exam, inspection, evaluation classes

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basis of physics – high school level

- 2. Basis of chemistry high school level
- 3. Basis of biology high school level

\

COURSE OBJECTIVES

C1 To provide students with a general knowledge about new materials

C2 To provide student with a ability to present their knowledge and opinion about new materials

C3 To get students interested in the modern materials research and development

C4 To enhance the ability of the presentation of the own results in the field of new materials

PROGRAM CONTENTS

Form of classes – seminar (Sem)		Number of hours
Sem1	Materials used in photodynamic therapy	2
Sem2	Materials for biocatalysis	2
Sem3	Photochromic materials	4

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

Sem4	Plasmonic nanomaterials	4
Sem5	Biomaterials	2
Sem6	Toxicity of new materials	1
	Total hours:	15

TEACHING TOOLS USED

- N1. Multimedia presentation
- N2. Conversation
- N3.Disscuctions

ACHIEVED SUBJECT LEARNING OUTCOMES				
Type of learning outcome	Code of learning outcome	Assessment of learning outcome		
related to knowledge:				

P8S_WG student knows the principles of photochemistry, photobiology and photophysics P8S_W student knows modern materials technologies

P8S_WK student knows and understands the principles of the light-matter interactions **related to skills:**

P8S_U student can apply the principles of the light-matter interactions

P8S_UW student is able to analyze and critically evaluate the photo

related to social competences:

P8S_UO student understands the need to inform the public about the need to achieve the goals of sustainable development in technologies for the production of chemicals, fuels, energy and environmental protection.

P8S_K student is able to work in a group, performing various roles including group leader

P8S_KK student is aware of the social role of the engineer

P8S_KO student is ready to critically evaluate his/her knowledge and received content

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Paras Prasad "Introduction to biophotonics" Wiley-Interscience, 2003
- [2] Vasily Klimov "Nanoplasmonic" Stanford Publishing, 2014
- [3] Gregory Barbillon "Nanoplasmonics Fundamentals and Applications" 2017
- [4] Jürgen Popp, Valery V. Tuchin, Arthur Chiou, Stefan H. Heinemann "Handbook of Biophotonics: Vol. 2: Photonics for Health Care" Wiley, 2016

SECONDARY LITERATURE:

- [5] Katharina Hüll, Johannes Morstein, and Dirk Trauner "In Vivo Photopharmacology" *Chem. Rev.* 2018, 118, 21, 10710–10747
- [6] Velema, W. A.; Szymanski, W.; Feringa, B. L. Photopharmacology: Beyond Proof of Principle. J. Am. Chem. Soc. 2014, 136, 2178–2191

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Katarzyna Matczyszyn, prof. PWr, katarzyna.matczyszyn@pwr.edu.pl