

COURSE CARD

1. Basic information

Course name in English:	Natural resources of the Solar System		
Course name in Polish:	Surowce naturalne Układu Słonecznego		
Number of hours:	15		
Type of course:	Elective course		
Form of course:	mixed forms (combination of lecture, seminar laboratory)	and	
Code of course:			
Course leader:	Prof. Tadeusz A. Przylibski		
Faculty of the course leader:	W6 Faculty of Geoengineering, Mining and Geology		
Email address of the course leader:	Tadeusz.Przylibski@pwr.edu.pl		
Scientific discipline(s) assigned to the course (doctoral students representing the marked disciplines can participate in the course):	Architecture and urban planning	\boxtimes	
	Automation, electronic, electrical engineering and space technologies	X	
	Information and communication technology	Χ	
	Biomedical engineering		
	Chemical engineering		
	Civil engineering, geodesy and transport		
	Materials engineering		
	Mechanical engineering	\boxtimes	
	Environmental engineering, mining, and energy	\boxtimes	
	Mathematics	\boxtimes	
	Chemical sciences		
	Physical sciences		
	Management and quality studies	\boxtimes	

2. Objectives

Introduction to the issues of obtaining raw materials for the needs of the economy. Characteristics of sources and possibilities of meeting needs in the near future. The myth of circularity in the raw materials economy and the myth of renewability. The formation and structure of the Solar System as the basis for knowledge about the possibility of searching for various types of raw materials in individual objects of our planetary system. Deposit formation processes on Earth and other objects in the solar system - state of knowledge. Presentation of sources, methods and methods of obtaining raw materials and the needs for their use and application in relation to their basic types, i.e. metallic, energy, chemical and rock raw materials. Students' own research on rocks and accumulations of terrestrial and extraterrestrial raw materials.

3. Content

Detailed information about the course content, including topics and form of classes.

Wrocław University of Science and Technology Doctoral School

No.	Торіс	Number of	Form of classes
		hours	
1	Sources of raw materials for the economy	2	lecture
2	The formation and structure of the Solar System	2	lecture
3	Deposits and deposit-forming processes	2	lecture
4	Metallic raw materials (deposits, resources, mining,	2	seminar
	demand and application)		
5	Energy resources (deposits, mining, demand and	2	seminar
	application)		
6	Chemical raw materials, rock raw materials and others	2	seminar
7	Terrestrial rocks and selected deposits	2	laboratory
8	Extraterrestrial rocks and selected deposits	1	laboratory

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

Open mind. Ability to use the Internet and scientific resources gathered there. Uncommon ability to communicate verbally, exchange views and experiences. Mastering the basics of the art of scientific discussion.

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	
SzD_W5	the rules for the dissemination of scientific results, including in open access	\boxtimes
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	\boxtimes
SzD_W7	the legal and ethical conditions of scientific activity;	\boxtimes
SzD_W8	the economic and other relevant conditions of scientific activity;	\boxtimes
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	\boxtimes
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes
	formulate and innovatively solve complex problems or perform research tasks, in	
	particular:	
	- define the purpose and subject of scientific research, formulate a research	
	hypothesis,	
	- develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	

Wrocław University of Science and Technology

Doctoral School

	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active	\boxtimes
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	Ø
SzD_U5	initiate debates and participate in a scientific discourse;	\boxtimes
SzD_U6	be able to speak a foreign language at B2 level of the Common European	\boxtimes
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	X
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	X
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	X
	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	Χ
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	\boxtimes
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

STUDENTS AUTOCRITICAL EVALUATION ON THE BASE OF NEW KNOWLEDGE AND ABILITIES COMPLETED

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

DISCUSSION, DISCUSSION, DISCUSSION, FIRST OF ALL DISCUSSION; MULTIMEDIA PRESENTATIONS – SHORT LECTURES; LITERATURE STUDENTS OWN STUDIES; SIMPLE FIELD AND LABORATORY MEASUREMENTS AND OBTAINED DATA INTERPRETATION AGAINST SCIENTIFIC KNOWLEDGE AND LAW REGULATIONS

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

Research papers published in leading scientific journals including, but not limited to: Energy & Environmental Science Resources Conservation and Recycling

Wrocław University of Science and Technology Doctoral School

Water Research **Environmental Science and Technology** Chemosphere Natural Resources Forum International Journal of Environmental Science and Technology International Journal of Mining Science and Technology Mineral Processing and Extractive Metallurgy Review **Ore Geology Reviews** Mining Metallurgy & Exploration Geology **Ore Geology Reviews** Geothermics Earth, Planets and Space International Journal of Mining, Reclamation and Environment **Resource Geology Mineral Deposits** Annual Review of Earth and Planetary Sciences Space Science Reviews Earth and Planetary Science Letters Monthly Notices of the Royal Astronomical Society Icarus **Planetary Science Journal** Earth, Planets and Space **Meteoritics and Planetary Science Planetary and Space Science** Solar System Research Space Science and Technology Earth, Moon and Planets Advances in Planetary Science Earth and Planetary Science Letters Geochimica et Cosmochimica Acta Geochemistry, Geophysics, Geosystems Journal of Rare Earths Geochemistry

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

I plan to extend the next editions to 30 hours of classes.