

COURSE CARD

1. Basic information

Course name in English:	Discrete Element Method (DEM) in Practice	
Course name in Polish:	Metoda Elementów Dyskretnych w zastosowaniu	
Number of hours:	15	
Type of course:	Elective course	
Form of course:	laboratory	
Code of course:		
Course leader:	dr hab. inż. Damian Pietrusiak	
Faculty of the course leader:	W10 Faculty of Mechanical Engineering	
Email address of the course leader:	damian.pietrusiak@pwr.edu.pl	
Scientific discipline(s) assigned to the course (doctoral students representing the marked disciplines can participate in the course):	Architecture and urban planning	\boxtimes
	Automation, electronic, and electrical engineering	
	Information and communication technology	
	Biomedical engineering	\boxtimes
	Chemical engineering	\boxtimes
	Civil engineering and transport	\boxtimes
	Mechanical engineering	\boxtimes
	Environmental engineering, mining, and energy	\boxtimes
	Mathematics	
	Chemical sciences	
	Physical sciences	\boxtimes
	Management and quality studies	

2. Objectives

- I. Task formulation ability to analyse the phenomena and properly classify the problem to solve with use of Discrete Element Method
- II. Discrete Element model preparation ability to develop proper model (geometry selection, discrete element/particle selection, interactions selection etc.) dedicated to the specified problem/solver
- III. Critical evaluation assessment of the obtained simulation results and ability to formulate practical(technical implementation) conclusions

Detailed information about the course content, including topics and form of classes.

No.	Торіс	Number of hours	Form of classes
1	Fundamental software skills - EDEM	2	laboratory
2	Bulk material handling – screw auger analysis	2	laboratory
3	Bulk material handling - chute design and analysis	2	laboratory
4	Geotechnical application – CPT and plate anchor simulations	2	laboratory
5	Chemical processing – pills/granulates mixing	2	laboratory
6	Mineral processing - milling	2	laboratory
7	Calibration procedures	2	laboratory
8	Quiz	1	Select form
9			Select form
10			Select form
11			Select form
12			Select form
13			Select form
14			Select form
15			Select form

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

Preferably:

- fundamentals of physics, mechanics
- basic skills in 3D modelling

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access	
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	

Wrocław University of Science and Technology Doctoral School

	has in a vinciples of languages therefore to the second residues in a second second			
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and			
	commercialisation of results of scientific activity and know-how related to these			
	results.			
	SKILLS. Doctoral student is able to:			
SzD_U2	use knowledge from different fields of science or art to creatively identify,	Χ		
	formulate and innovatively solve complex problems or perform research tasks, in			
	particular:			
	 define the purpose and subject of scientific research, formulate a research hypothesis, 			
	 develop research methods, techniques and tools, and use them creatively, 			
	 draw conclusions on the basis of scientific research; 			
	critically analyse and evaluate the results of scientific research, expertise and			
	other creative work and their contribution to knowledge development;			
	transfer the results of scientific activities to the economic and social spheres;			
SzD_U3	communicate on specialised topics to the extent that they enable an active	\boxtimes		
	participation in the international scientific community;			
SzD_U4	disseminate research results, including in popular forms;			
SzD_U5	initiate debates and participate in a scientific discourse;	\boxtimes		
SzD_U6	be able to speak a foreign language at B2 level of the Common European			
	Framework of Reference for Languages to a level that enables them to participate			
	in the international scientific and professional environment;			
SzD_U7	plan and implement an individual or collective research or creative activity,	\boxtimes		
	including in an international environment;			
SzD_U8	independently plan and act for one's own development and inspire and organize	\boxtimes		
	the development of others;			
SzD_U9	plan classes or groups of classes and implement them using modern methods and			
	tools.			
C-D K2	SOCIAL COMPETENCES. Doctoral student is ready to:			
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest			
	activities, thinking and acting in an entrepreneurial way;			
SzD_K4	maintaining and developing the ethos of research and creative environments, including:	\boxtimes		
	- carrying out scientific activities in an independent manner,			
	- respecting the principle of public ownership of research results, taking into			
	account the principles of intellectual property protection.			
		L		

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

- :
- Presence
- Class activity
- Final quiz

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

:

- Multimedia presentation
- Problem based learning
- Jigsaw
- Debate
- Socratic method
- Metacognitive questions
- Peer tutoring
- Computer Aided Engineering (CAE)

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

Primary:

1. Gelnar D., Zegzulka J., Discrete Element Method in the Design of Transport System, Springer 2019

Secondary:

- 1. Jebahi M., Andre D., Terreros I., Iordanoff I., Discrete Element Method to Model 3D Continuous Materials, Wiley 2015
- 2. EDEM Manual

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

Class language: English Software: EDEM