

COURSE CARD

1. Basic information

Course name in English:	Advanced multifunctional amorphous and crystalline metallic materials - manufacturing and investigations			
Course name in Polish:	Zaawansowane wielofunkcyjne amorficzne i krystaliczne			
	materiały metaliczne - wytwarzanie i badania			
Number of hours:	15			
Type of course:	Elective course			
Form of course:	mixed forms (combination of lecture, seminar	and		
	laboratory)			
Code of course:				
Course leader:	Mariusz Hasiak, Assoc. Prof., Ph.D., D.Sc.			
Faculty of the course leader:	W10 Faculty of Mechanical Engineering			
Email address of the course leader:	mariusz.hasiak@pwr.edu.pl			
Scientific discipline(s) assigned to	Architecture and urban planning			
the course (doctoral students	Automation, electronic, electrical engineering and			
representing the marked	space technologies			
disciplines can participate in the	Information and communication technology			
course):	Biomedical engineering			
	Chemical engineering			
	Civil engineering, geodesy and transport	\boxtimes		
	Materials engineering			
	Mechanical engineering			
	Environmental engineering, mining, and energy	\boxtimes		
	Mathematics			
	Chemical sciences			
	Physical sciences			
	Management and quality studies			

2. Objectives

During the course, the student will be introduced to advanced techniques of metallic materials manufacturing. During the course, metallic alloys with amorphous and crystalline structures will be produced by the rapid cooling technique. Further, students will be introduced to advanced research techniques at the nanometer and atomic scales. Measurements of surface topography, phase transitions and mechanical properties for the fabricated materials are planned in the next steps. Numerical data analysis will be one of the key topics discussed in the course with students

3. Content

Detailed information about the course content, including topics and form of classes.

Wrocław University of Science and Technology Doctoral School

No.	Τορίς	Number of	Form of classes
		hours	
1	Introduction to solid state physics and modern	2	lecture
	manufacturing techniques of metallic materials		
2	Production of amorphous and nanocrystalline metallic	2	laboratory
	alloys by arc melting and rapid cooling technique		
3	Introduction to advanced techniques for studying the	2	seminar
	microstructure of single- and multi-phase materials (X-		
	ray, SEM/EDS, TEM, CEMS/Mössbauer spectroscopy)		
4	Investigations of topography of materials in nanoscale	2	laboratory
	by Atomic Force Microscopy (AFM/LFM) with		
	numerical data analysis		
5	Phase transitions studies in metallic alloys	2	lecture
	(DSC/DTA/TG investigations)		
6	Investigation of mechanical properties of materials by	2	laboratory
	nanoindentation testing		
7	Relation between microstructure and mechanical	2	seminar
	properties in advanced multifunctional amorphous and		
	crystalline materials		
8	Analysis of the research results obtained in the course	1	project
9			Select form
10			Select form
11			Select form
12			Select form
13			Select form
14			Select form
15			Select form

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

- a) Basic knowledge of manufacturing and metallic materials science;
- b) Basic knowledge of metrology;
- c) Basic knowledge of physics, chemistry and mechanics
- d) Knowledge of the principles of analysis of research results

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	\boxtimes

Wrocław University of Science and Technology

Doctoral School

SzD_W5	the rules for the dissemination of scientific results, including in open access	
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	\boxtimes
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	\boxtimes
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify, formulate and innovatively solve complex problems or perform research tasks, in particular:	
	 define the purpose and subject of scientific research, formulate a research hypothesis, 	
	- develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	
	other creative work and their contribution to knowledge development:	
	transfer the results of scientific activities to the economic and social spheres:	
SzD_U3	communicate on specialised topics to the extent that they enable an active	\boxtimes
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	\boxtimes
SzD_U5	initiate debates and participate in a scientific discourse;	\boxtimes
SzD_U6	be able to speak a foreign language at B2 level of the Common European	\boxtimes
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	\boxtimes
S7D 118	independently plan and act for one's own development and inspire and organize	
320_00	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	\boxtimes
	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	\boxtimes
	activities, thinking and acting in an entrepreneurial way;	57
32D_K4	including.	
	- carrying out scientific activities in an independent manner.	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Participation in the discussion, presentation, raport

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Multimedia presentation, discussion, presentation of measurements, own work, taking your own measurements

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

- 1. Michael Miller, Peter Liaw, Bulk Metallic Glasses: An Overview, Springer, 2008
- 2. C. Suryanarayana, A. Inoue, CRC Press, 2018,
- 3. William D. Callister Jr., David G. Rethwisch, Fundamentals of Materials Science and Engineering.
- An Integrated Approach, Wiley, 2015,
- 4. Charles Kittel, Introduction to Solid State Physics, Wiley, 2005,
- 5. Jiří Němeček, Nanoindentation in Materials Science, 2016
- 6. C. Suryanarayana, Experimental techniques in materials and mechanics, CRC Press, 2011

9. Other remarks

Additional remarks, comments, (e.g., language of the course)