

COURSE CARD

1. Basic information

Course name in English:	Electrochemistry and corrosion in measurement praction	ce
Course name in Polish:	Elektrochemia i korozja w praktyce pomiarowej	
Number of hours:	15	
Type of course:	Elective course	
Form of course:	laboratory	
Code of course:	W03INC-SD103L / CIQ100398L	
Course leader:	DSc Eng Juliusz Winiarski, Assoc Prof.	
Faculty of the course leader:	W3 Faculty of Chemistry	
Email address of the course leader:	juliusz.winiarski@pwr.edu.pl	
Scientific discipline(s) assigned to	Architecture and urban planning	
the course (doctoral students representing the marked	Automation, electronic, electrical engineering and space technologies	\boxtimes
disciplines can participate in the course):	Information and communication technology	
	Biomedical engineering	
	Chemical engineering	\boxtimes
	Civil engineering, geodesy and transport	
	Materials engineering	\boxtimes
	Mechanical engineering	\boxtimes
	Environmental engineering, mining, and energy	
	Mathematics	
	Chemical sciences	\boxtimes
	Physical sciences	
	Management and quality studies	

2. Objectives

- O1. To understand the nature of electrochemical interface.
- O2. Understand the interactions of the surface of the material with the corrosive environment.
- O3. Introduction to modern techniques of materials testing: EIS, CV, LSV, *dc* polarization.
- O4. To get acquainted with data interpretation.

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Topic	Number of	Form of classes
		hours	
1	Introductory classes. Determining the scope of work,	1	laboratory
	rules of course implementation and passing conditions.		
2	Electrochemical interface, mass transport, reactions.	2	laboratory

3	Corrosion. Basic polarization techniques in corrosion	2	laboratory
	prediction. From theory to measurement.		
4	Electrochemical impedance spectroscopy (EIS). From	2	laboratory
	theory to measurement.		
5	Electrochemical impedance spectroscopy (EIS) of	2	laboratory
	corroding systems. Spectra fitting and interpretation.		
6	Electrochemical impedance spectroscopy (EIS) for	2	laboratory
	testing of batteries.		
7	Voltammetry for kinetics and mechanisms of HER	2	laboratory
	reaction.		
8	Rotating disk electrode (RDE) in practical application.	2	laboratory
	Reactions under activation or diffusion control.		

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

- 1. Basics of materials science and physical chemistry.
- 2. Fundamentals of electrochemistry. Galvanic cell. Potential. Redox reactions, hydrogen evolution reaction and oxygen evolution reaction.
- 3. Basics of corrosion science.

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	\boxtimes
	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access	
	mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	
SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes
	formulate and innovatively solve complex problems or perform research tasks, in	
	particular:	
	- define the purpose and subject of scientific research, formulate a research	
	hypothesis,	
	- develop research methods, techniques and tools, and use them creatively,	<u> </u>

	- draw conclusions on the basis of scientific research;	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active	\boxtimes
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	\boxtimes
SzD_U6	be able to speak a foreign language at B2 level of the Common European	\boxtimes
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	\boxtimes
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

The course will end with a final report devoted to one measurement technique individually selected by each participant. The completeness of documentation, individual approach to interpretation of the results and the quality of cited sources will be assessed.

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Laboratory exercises combined with Author's lecture. Developing own interpretation, discussion.

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

- [1] Electrochemical Methods: Fundamentals and Applications, 2nd Edition, Allen J. Bard, Larry R. Faulkner. John Wiley & Sons. 1980.
- [2] Instrumental Methods in Electrochemistry, 1st Edition April 1. D Pletcher, R Greff, R Peat, L M Peter, J Robinson. ELLIS HORWOOD LIMITED. Chichester. 2001

- [3] https://www.metrohm.com/
- [4] https://www.gamry.com/
- [5] A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, Springer Science + Business Media. New York. 2014.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

We can adapt measurement techniques to the materials provided by participants. We can develop other research techniques for specific applications.