

COURSE CARD

1. Basic information

Course name in English:	Recent research trends in Chemical sciences	
Course name in Polish:	Najnowsze kierunki badań w [nazwa dyscypliny]	
Number of hours:	30	
Type of course:	Recent research trends in discipline	
Form of course:	lecture	
Code of course:		
Course leader:	Prof. Ewa Żymańczyk-Duda	
Faculty of the course leader:	W3 Faculty of Chemistry	
Email address of the course leader:		
Scientific discipline(s) assigned to	Architecture and urban planning	
the course (doctoral students representing the marked disciplines	Automation, electronic, electrical engineering and space technologies	
can participate in the course):	Information and communication technology	
	Biomedical engineering	
	Chemical engineering	
	Civil engineering, geodesy and transport	
	Materials engineering	
	Mechanical engineering	
	Environmental engineering, mining, and energy	
	Mathematics	
	Chemical sciences	
	Physical sciences	
	Management and quality studies	

2. Objectives

Course objectives are as follows:

1. Providing students with knowledge about current applications of biological tools such as cells, subcellular structures and nanostructures constructed with the use of macromolecules, for the development of diagnostics and devices for treatment of particular diseases and among others also for the evaluation of environment contamination

2 Recapitulation of physical chemistry laws as universal and future-proof tools for interpretation of experimental data in many branches of chemistry.

3. Providing a systematic background of modern organic chemistry, in particular, reactivity of organic compounds together with providing advanced knowledge on correlation between the structure and reaction mechanisms in modern approaches to carbon-X (any atom) formation

3. Content

Detailed information about the course content, including topics and form of classes.

Wrocław University of Science and Technology Doctoral School

No.	Торіс	Number of	Form of classes
		hours	
1	Fundamentals about biological systems – natural	2	lecture
	polymers		
2	Enzymes as diagnostic markers	2	lecture
3	RNA and DNA in nanotechnology	2	lecture
4	Artificial cells in the development of encapsulation cells	2	lecture
	technology ECT		
5	Theranostics based upon the nanotechnology	2	lecture
6	Statistical distributions – bridging molecular and	2	lecture
	macroscopic properties		
7	The laws of thermodynamics in chemistry	2	lecture
8	Theory of the equilibrium state	2	lecture
9	Reaction rates – chemical kinetics	2	lecture
10	Transition state theory	2	lecture
11	Organocatalysis	2	lecture
12	Metal catalysis	2	lecture
13	C-H functionalization	2	lecture
14	Exploiting non-covalent π interactions for catalyst	2	lecture
	design		
15	Modern peptide synthesis	2	lecture

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

1. Biology – fundamentals

2. Principles of organic chemistry

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered in the curricula;	Ø
SzD_W4	research methodology;	
SzD_W5	the rules for the dissemination of scientific results, including in open access mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	\boxtimes
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	

Wrocław University of Science and Technology Doctoral School

SzD_W9	basic principles of knowledge transfer to the economic and social spheres and		
_	commercialisation of results of scientific activity and know-how related to these		
	results.		
	SKILLS. Doctoral student is able to:		
SzD_U2	use knowledge from different fields of science or art to creatively identify,		
_	formulate and innovatively solve complex problems or perform research tasks, in		
	particular:		
	 define the purpose and subject of scientific research, formulate a research hypothesis, 		
	- develop research methods, techniques and tools, and use them creatively,		
	- draw conclusions on the basis of scientific research;		
	critically analyse and evaluate the results of scientific research, expertise and		
	other creative work and their contribution to knowledge development;		
SzD_U3	transfer the results of scientific activities to the economic and social spheres; communicate on specialised topics to the extent that they enable an active		
320_03	participation in the international scientific community;		
SzD_U4	disseminate research results, including in popular forms;		
SzD_U5	initiate debates and participate in a scientific discourse;		
SzD_U6	be able to speak a foreign language at B2 level of the Common European		
	Framework of Reference for Languages to a level that enables them to participate		
	in the international scientific and professional environment;		
SzD_U7	plan and implement an individual or collective research or creative activity, including in an international environment;		
SzD_U8	independently plan and act for one's own development and inspire and organize		
	the development of others;		
SzD_U9	plan classes or groups of classes and implement them using modern methods and		
	tools.		
	SOCIAL COMPETENCES. Doctoral student is ready to:		
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest		
	activities, thinking and acting in an entrepreneurial way;		
SzD_K4	maintaining and developing the ethos of research and creative environments,		
	including:		
	- carrying out scientific activities in an independent manner,		
	 respecting the principle of public ownership of research results, taking into account the principles of intellectual property protection. 		

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Students are evaluated in form of oral examination and discussion on the subjects related to the lectures and scientific articles , provided by lecturers as additional materials

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

- 1. Multimedia presentations
- 2. Traditional lectures

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

1. Current scientific articles related to the subjects

2. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure" 8th Edition, Wiley, 2019

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

English language