

COURSE CARD

1. Basic information

Course results for all also	Altanosti a fuala		
Course name in English:	Alternative fuels		
Course name in Polish:	Paliwa alternatywne		
Number of hours:	30		
Type of course:	Elective course		
Form of course:	mixed forms (combination of lecture, seminar laboratory)	and	
Code of course:			
Course leader:	Katarzyna Pstrowska		
Faculty of the course leader:	W3 Faculty of Chemistry		
Email address of the course leader:	katarzyna.pstrowska@pwr.edu.pl		
Scientific discipline(s) assigned to	Architecture and urban planning		
the course (doctoral students	Automation, electronic, electrical engineering and		
representing the marked disciplines	space technologies		
can participate in the course):	Information and communication technology		
	Biomedical engineering		
	Chemical engineering		
	Civil engineering, geodesy and transport		
	Materials engineering		
	Mechanical engineering		
	Environmental engineering, mining, and energy	×	
	Mathematics		
	Chemical sciences	☒	
	Physical sciences		
	Management and quality studies		

2. Objectives

- 1. Understanding problems of manufacturing and using motor fuels including biofuels.
- 2. Knowing the physical and chemical properties of biofuels and their production methods in the industry.
- 3. Determination of biofuels properties using standardized analytical methods applied in the laboratory.
- 4. Understanding the relationships between operation of vehicles fuelled by alternative fuel and environmental issues.

3. Content

Detailed information about the course content, including topics and form of classes.

No.	Topic	Number of	Form of classes
		hours	
1	Gasoline& bioethanol	2	lecture
2	Diesel oil & biodiesel	2	lecture
3	Fuel additives for petroleum based fuels		lecture
4	Natural gas and LPG	2	lecture
5	Biogas – the fuel of future	2	lecture
6	Hydrogen energy	2	lecture
7	Renewable fuels – trends and forecasts	2	lecture
8	Oxford debate on alternative fuels	2	seminar
9	Transesterification of vegetable oils & preparation of transesterification catalysts	5	laboratory
10	Analysis of the properties of diesel fuel and its bio-components	5	laboratory
11	Analysis of the properties of gasoline and its bio-components	4	laboratory

4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

- 1. Fundamentals of chemistry.
- 2. Ability to exercise independent laboratory tests, supported by elemental manual dexterity. Basic knowledge of preservation of health and safety in the laboratory.
- 3. Ability to do calculations, create graphs and prepare reports in any office software.

5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

Symbol	Learning outcome	
	KNOWLEDGE. Doctoral student knows and understands:	
SzD_W3	the main trends in the development of the scientific or artistic disciplines covered	
	in the curricula;	
SzD_W4	research methodology;	\boxtimes
SzD_W5	the rules for the dissemination of scientific results, including in open access mode;	
SzD_W6	the fundamental dilemmas of modern civilization;	×
SzD_W7	the legal and ethical conditions of scientific activity;	
SzD_W8	the economic and other relevant conditions of scientific activity;	
SzD_W9	basic principles of knowledge transfer to the economic and social spheres and	
	commercialisation of results of scientific activity and know-how related to these	
	results.	
	SKILLS. Doctoral student is able to:	

SzD_U2	use knowledge from different fields of science or art to creatively identify,	\boxtimes
	formulate and innovatively solve complex problems or perform research tasks, in	
	particular:	
	- define the purpose and subject of scientific research, formulate a research	
	hypothesis,	
	- develop research methods, techniques and tools, and use them creatively,	
	- draw conclusions on the basis of scientific research;	
	critically analyse and evaluate the results of scientific research, expertise and	
	other creative work and their contribution to knowledge development;	
	transfer the results of scientific activities to the economic and social spheres;	
SzD_U3	communicate on specialised topics to the extent that they enable an active	
	participation in the international scientific community;	
SzD_U4	disseminate research results, including in popular forms;	
SzD_U5	initiate debates and participate in a scientific discourse;	\boxtimes
SzD_U6	be able to speak a foreign language at B2 level of the Common European	
	Framework of Reference for Languages to a level that enables them to participate	
	in the international scientific and professional environment;	
SzD_U7	plan and implement an individual or collective research or creative activity,	
	including in an international environment;	
SzD_U8	independently plan and act for one's own development and inspire and organize	
	the development of others;	
SzD_U9	plan classes or groups of classes and implement them using modern methods and	
	tools.	
	SOCIAL COMPETENCES. Doctoral student is ready to:	
SzD_K3	fulfilling the social obligations of researchers and creators, initiate public interest	
	activities, thinking and acting in an entrepreneurial way;	
SzD_K4	maintaining and developing the ethos of research and creative environments,	
	including:	
	- carrying out scientific activities in an independent manner,	
	- respecting the principle of public ownership of research results, taking into	
	account the principles of intellectual property protection.	

6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Lecture – oxford debate on the proposed topic; Laboratory – report. final grade - average of the debate grade and the report grade.

7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Multimedia presentation (lectures), presentation & own work (seminar), Laboratory experiment & own work (laboratory)

8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

PRIMARY LITERATURE:

- [1] Kułażyński Marek: Green fuels, Automotive Engineering, Wrocław University of Technology; 2011, pp.103.
- [2] Kułażyński Marek, Sroka Zbigniew J: Green fuels laboratory, Automotive Engineering, Wrocław University of Technology, 2011. pp. 76.
- [3] Kirk R. Smith: Biofuels, Air Pollution, and Health: A Global Review Springer Science & Business Media, 11 mar 2013 pp 476
- [4] 2nd Edition Handbook of Alternative Fuel Technologies Edited By Sunggyu Lee, James G. Speight, Sudarshan K. Loyalka, CRC Press, 2015
- [5] Alternative Fuels Book The Future of Hydrogen, Third Edition By Michael Frank Hordeski, 3rd Edition First Published 2013, DOI https://doi.org/10.1201/9781003151753

SECONDARY LITERATURE:

- [1] Beata Narowska, Marek Kułażyński, Marcin Łukaszewicz. Sunflower oil as a substrate for biofuel production. w: Sunflower Oil: Interactions, Applications and Research. (red.) MD Monwar Hossain. NOVA Science Publishers, New York, 2017, s. 83-119
- [2] S. P. Srivastava, J. Hancsók, Fuels and Fuel Additives, John Wiley & Sons, 2014
- [3] R. Folkson, S. Sapsford (ed.); Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance. Towards Zero Carbon Transportation, 2nd Ed.; Elsevier; 2022.

9. Other remarks

Additional remarks, comments, (e.g., language of the course)

Course will be conducted in English.