

## **COURSE CARD**

#### 1. Basic information

| Course name in English:                                                                           | Microsystems and Microengineering                                     |   |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---|
| Course name in Polish:                                                                            | Mikrosystemy i Mikroinżynieria                                        |   |
| Number of hours:                                                                                  | 30                                                                    |   |
| Type of course:                                                                                   | Elective course                                                       |   |
| Form of course:                                                                                   | lecture                                                               |   |
| Code of course:                                                                                   |                                                                       |   |
| Course leader:                                                                                    | Prof. Rafał Walczak                                                   |   |
| Faculty of the course leader:                                                                     | W12 Faculty of Electronics, Photonics and Microsystems                | ; |
| Email address of the course leader:                                                               | rafal.walczak@pwr.edu.pl                                              |   |
| Scientific discipline(s) assigned to                                                              | Architecture and urban planning                                       |   |
| the course (doctoral students representing the marked disciplines can participate in the course): | Automation, electronic, electrical engineering and space technologies | × |
|                                                                                                   | Information and communication technology                              | Ø |
|                                                                                                   | Biomedical engineering                                                |   |
|                                                                                                   | Chemical engineering                                                  |   |
|                                                                                                   | Civil engineering, geodesy and transport                              |   |
|                                                                                                   | Materials engineering                                                 |   |
|                                                                                                   | Mechanical engineering                                                |   |
|                                                                                                   | Environmental engineering, mining, and energy                         |   |
|                                                                                                   | Mathematics                                                           |   |
|                                                                                                   | Chemical sciences                                                     |   |
|                                                                                                   | Physical sciences                                                     |   |
|                                                                                                   | Management and quality studies                                        |   |

# 2. Objectives

Familiarizing with the newest technical and technological trends related to microsystems and microengineering

Analyse and discussion about actual and developing fields of application of microsystems in research and industry.

#### 3. Content

Detailed information about the course content, including topics and form of classes.

| No. | Topic                               | Number of hours | Form of classes |
|-----|-------------------------------------|-----------------|-----------------|
| 1   | Introduction to microsystems (MEMS) |                 | lecture         |
| 2   | Microengineering in mems technique  |                 | lecture         |



| 3  | 3D printing for MEMS                       | lecture |
|----|--------------------------------------------|---------|
| 4  | 4D prinitng                                | lecture |
| 5  | Printed electronics                        | lecture |
| 6  | Automotive microsystems                    | lecture |
| 7  | Analytical microsystems                    | lecture |
| 8  | Microsystems for medicine                  | lecture |
| 9  | Optical microsystems                       | lecture |
| 10 | Micromechatronics and micromachines        | lecture |
| 11 | MEMS for energy harvesting                 | lecture |
| 12 | MEMS for IoT and Industry 4.0              | lecture |
| 13 | Vacuum MEMS                                | lecture |
| 14 | Space MEMS                                 | lecture |
| 15 | Review of worldwide market of microsystems | lecture |

## 4. Prerequisites

List of prerequisites relating to knowledge, skills and other competences for course participants.

Knowledge about state-of-the-art and new trends of modern electronics and microsystems technique. Ability to improve competences in interdisciplinary fields of science and research

# 5. Learning outcomes

List of learning outcomes at level 8 of the Polish Qualifications Framework assigned to the course (mark the learning outcomes in the last column).

| Symbol | Learning outcome                                                                      |             |
|--------|---------------------------------------------------------------------------------------|-------------|
|        | KNOWLEDGE. Doctoral student knows and understands:                                    |             |
| SzD_W3 | the main trends in the development of the scientific or artistic disciplines covered  | $\boxtimes$ |
|        | in the curricula;                                                                     |             |
| SzD_W4 | research methodology;                                                                 |             |
| SzD_W5 | the rules for the dissemination of scientific results, including in open access mode; |             |
| SzD_W6 | the fundamental dilemmas of modern civilization;                                      |             |
| SzD_W7 | the legal and ethical conditions of scientific activity;                              |             |
| SzD_W8 | the economic and other relevant conditions of scientific activity;                    | ⊠           |
| SzD_W9 | basic principles of knowledge transfer to the economic and social spheres and         |             |
|        | commercialisation of results of scientific activity and know-how related to these     |             |
|        | results.                                                                              |             |
|        | SKILLS. Doctoral student is able to:                                                  |             |
| SzD_U2 | use knowledge from different fields of science or art to creatively identify,         | ×           |
|        | formulate and innovatively solve complex problems or perform research tasks, in       |             |
|        | particular:                                                                           |             |
|        | - define the purpose and subject of scientific research, formulate a research         |             |
|        | hypothesis,                                                                           |             |
|        | - develop research methods, techniques and tools, and use them creatively,            |             |



|        | - draw conclusions on the basis of scientific research;                                 |             |
|--------|-----------------------------------------------------------------------------------------|-------------|
|        | critically analyse and evaluate the results of scientific research, expertise and       |             |
|        | other creative work and their contribution to knowledge development;                    |             |
|        | transfer the results of scientific activities to the economic and social spheres;       |             |
| SzD_U3 | communicate on specialised topics to the extent that they enable an active              | $\boxtimes$ |
|        | participation in the international scientific community;                                |             |
| SzD_U4 | disseminate research results, including in popular forms;                               | $\boxtimes$ |
| SzD_U5 | initiate debates and participate in a scientific discourse;                             |             |
| SzD_U6 | be able to speak a foreign language at B2 level of the Common European                  | ×           |
|        | Framework of Reference for Languages to a level that enables them to participate        |             |
|        | in the international scientific and professional environment;                           |             |
| SzD_U7 | plan and implement an individual or collective research or creative activity,           | $\boxtimes$ |
|        | including in an international environment;                                              |             |
| SzD_U8 | independently plan and act for one's own development and inspire and organize           |             |
| _      | the development of others;                                                              |             |
| SzD_U9 | plan classes or groups of classes and implement them using modern methods and           |             |
|        | tools.                                                                                  |             |
|        | SOCIAL COMPETENCES. Doctoral student is ready to:                                       |             |
| SzD_K3 | fulfilling the social obligations of researchers and creators, initiate public interest | ×           |
| _      | activities, thinking and acting in an entrepreneurial way;                              |             |
| SzD_K4 | maintaining and developing the ethos of research and creative environments,             | $\boxtimes$ |
|        | including:                                                                              |             |
|        | - carrying out scientific activities in an independent manner,                          |             |
|        | - respecting the principle of public ownership of research results, taking into         |             |
|        | account the principles of intellectual property protection.                             |             |
|        |                                                                                         |             |

#### 6. Evaluation

Short description of the method(s) used to evaluate the learning outcomes assigned to the course, e.g., exam, test, report, presentation, etc.

Individual final written work (2 page in the form of conference abstract) on potential application of microsystems in students research works.

#### 7. Teaching methods

Short description of the teaching methods used during the course, e.g., multimedia presentation, discussion, literature studies, developing written documents, own work, etc.

Multimedia presentation followed with discussion on the lectures subjects.

#### 8. Literature

List of primary and secondary literature used to prepare the course and including additional knowledge for participants, e.g., books, textbooks, research papers, standards, web pages, etc.

R. Walczak, Laboratoria chipowe z detekcją optyczną, konstrukcja, technologia i przykłady wykorzystania, Oficyna Wydawnicza PWr, 2014



Scientific journals in the field: Journal of Micromechanics and Microengineering, Sensors and Actuators A/B, LabChip Journal, Micromachines, BioChip Journal etc

## 9. Other remarks

Additional remarks, comments, (e.g., language of the course)

Language of the course – English.