DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

SUPERVISOR/TEAM/ DECLARING/CONDUCTING COURSE: Regina Paszkiewicz DEPARTMENT: Faculty of Microsystem Electronics and Photonics W12 SCIENTIFIC DISCIPLINE: Automation, Electronics and Electrical Engineering

COURSE CARD

Course name in Polish: Technologia i Zastosowanie Niskowymiarowych Struktur Półprzewodnikowych Course name in English: Technology and application of low dimensional semiconductor structures Course language Polish / English* University-wide general course type*: The course is intended for all PhD students: YES / NO 1) BASIC COURSE 2) SPECIALIST COURSE 3) SEMINAR 4) HUMANISTIC COURSE 5) LANGUAGE

Subject code: AEQ100237W

* delete as applicable

	Lecture	Foreign language course	Seminar	Mixed forms
Number of hours of organized classes in university (ZZU)	30			
Grading	Exam	Exam	Oral presentation	Exam, inspection, evaluation classes
Number of ECTS points	0			

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Knowledge of solid-state physics

2. Competence to gain complementary areas of knowledge and skills

3. Organizational competences related to the transfer of information

\

COURSE OBJECTIVES

C1 Ph D students introduction to the technologies of low-dimensional semiconductor structures (NSP) manufacturing

C3 Getting of Ph D students acquainted with the areas of NSP applications

C3 Getting of Ph D students acquainted with the current state and development trends of the NSP fabrication and applications

PROGRAM CONTENTS

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

	Form of classes – lecture (Lec)	Number of hours
Lec1	Nanotechnology, definition, classification. Areas of application	
Lec2	Miniaturization, scaling, new functional properties of nanostructures. Nanostructures architecture	
Lec3	Basics of semiconductor nanostructures manufacturing technology	
Lec4	Infrastructure of modern technological laboratory of "clean room" type (purity of gases, water and reagents, security problems)	
Lec5	Lithographic and non-lithographic methods of nanostructures manufacturing, nano-substrates	
Lec6	Review of basic technological processes (bulk crystallization, deposition, doping, etching, oxidation, lithography, self-organization and catalysis)	
Lec7	Selected methods of photonic crystal fabrication ("micropulling"), epitaxy of low-dimensional layers and structures (techniques: CVD, MOVPE, MBE)	
Lec8	Methods of pattern fabrication, limitation of optical lithography (techniques: UV, DUV, EUV)	
Lec9	X-ray lithography (LIGA technique), ion-lithography, electron- lithography, sampling methods ("dip-pen", "nanoscraching"), nanoimprint	
Lec10	Self-organizing semiconductor structures. Quantum wells, wires, dots: growth, positioning and stability	
Lec11	Properties and fabrication of individual nanoparticles: carbon nanotubes, non-diamond, DLC, graphene, organic materials - their application for devices	
Lec12	Selected methods of nanostructures properties characterization	
Lec13	Examples of nanostructures application in devices (lasers, HEMT transistors, transducers and sensors)	
Lec14	Current trends in nanotechnology, new materials (nano-powders, nano-crystals, nano-composites, layered materials, gradient structures) devices (3D transistors, nano-sensors) and nano-tools	
Lec15	Summary of the lecture	
	Total hours:	

	Number of hours	
Lng1		
Lng2		
Lng3		
	Total hours:	

	Form of classes – seminar (Sem)	Number of hours
Sem1		
Sem2		
Sem3		
	Total hours:	

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

	Form of classes – mixed forms (mix)	Number of hours
Mix1		
Mix2		
Mix3		
	Total hours	

TEACHING TOOLS USED

N1. Thematic lectures - traditional method

- N2. Thematic laboratory visits demonstration and discussion
- N3. Own work preparation for a lecture

N4. Consultations

ACHIEVED SUBJECT LEARNING OUTCOMES			
Type of learning outcome	Code of learning outcome	Assessment of learning outcome	
Knowledge	P8SU-W	Oral answers, colloquium	
Knowledge			
Skills	P8U-U	Oral answers	
Skills	P8S-UW	Speeches prepared for the given issue	
Social competence	P8S-KO	Timework at problematical assembly	
Social competence			

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Marc J. Madou, Fundamentals of Microfabricationand Nanotechnology, ThirdEdition, BocaRaton, USA, 2011
- [2] S. Franssila, Introduction to Microfabrication, John Wiley&Sons Ltd, England, 2004
- [3] Kazuaki Suzuki, Microlithography: Science and Technology, Second Edition, CRC Press, Boca Raton, USA, 2007
- [4] G. Cao, Y. Wang, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications, Second Edition, World Scientific Publishing Co., Pte. Ltd., Singapore, China, 2011

SECONDARY LITERATURE:

[1] Journals: Journal of Nanostructures, Compound Semiconductors, Semiconductor Engineering

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

Regina Paszkiewicz, Regina.Paszkiewicz@pwr.edu.pl