DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

SUPERVISOR/TEAM/ DECLARING/CONDUCTINGCOURSE: Prof. Antoni Mituś DEPARTMENT: Faculty of Basic Technical Problems W11 SCIENTIFIC DISCIPLINE: Physical Sciences

COURSE CARD

Course name in Polish: Mini-kompendium klasycznej fizyki teoretycznej Course name in English: Mini-kompendium of Classical Theoretical Physics Course language English* University-wide general course type*: The course is intended for all PhD students: YES / NO 1) BASIC COURSE 2) SPECIALIST COURSE 3) SEMINAR 4) HUMANISTIC COURSE 5) LANGUAGE

Subject code: NFQ100241W

* delete as applicable

	Lecture	Foreignlanguagecourse	Seminar	Mixedforms
Number of hours of organized classes in university (ZZU)	30			
Grading	Exam	Exam	Oralpresentation	Exam, inspection, evaluation classes
Number of ECTS points	0			

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Theoretical physics according to technical university study programme

2. Mathematical analysis according to technical university study programme

1

COURSE OBJECTIVES

C1 Overview of methodology and basic concepts and formulas in physics based on Landau Lifshitz course of theoretical physics

C2 Solving typical problems from Landau Lisfhitz course of theoretical physics

PROGRAM CONTENTS

Form of classes – lecture (Lec)		Number of hours
Lec1	Mechanics: principle of least action, symmetries and conservation laws, Hamilton and Hamilton-Jacobi equations. Integrating equations of motion, small oscillations, dynamics of a rigid body (Euler's equations).	6

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

Lec2	Electrodynamics: charge in electromagnetic field. Equations of electromagnetic field. Constant electromagnetic field. Electromagnetic waves. Electromagnetic radiation.	6
Lec3	Statistical physics: thermodynamics, Gibbs distribution, Fermi and Bose distributions. Solids. Fluctuations. Phase transitions.	6
Lect4	Theory of elasticity: elastic deformations, Hooke's law, equilibrium of isotropic bodies, elastic waves, dislocations, thermodynamics.	3
Lect5	Hydrodynamics: continuity equation, Euler's equation, Bernouli and Navier-Stokes equations, heat transport.	3
Lect6	Electrodynamics of continuous media: electrostatics of conductors and dielectrics. Constant magnetic field. Electromagnetic waves and their propagation.	б
	Total hours:	30

TEACHING TOOLS USED

N1. Lecture

N2. Active discussion during the lecture

ACHIEVED SUBJECT LEARNING OUTCOMES				
Type of learning outcome	Code of learning outcome	Assessment of learning outcome		
Knowledge Basic concepts and formulas in physics based on Landau Lifshitz course of theoretical physics	P8S_WG	Oral and written examination, discussion during the lecture		
Knowledge Methodology of lectures of theoretical physics based on Landau Lifshitz course of theoretical physics	P8S_WG	Oral and written examination, discussion during the lecture		
Skills Schemes of derivation of basic laws in theoretical physics	P8S_UW	Oral and written examination, discussion during the lecture		
Skills Solving typical problems from Landau Lifshitz course of theoretical physics	P8S_UW	Oral and written examination, discussion during the lecture		
Social competence	P8U_K	Discussion during the lecture		

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND **TECHNOLOGY**

Awareness of social role of a scientist

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- L.D. Landau, E.M Lifszyc, Mechanika, PWN, 2014 [1]
- [2]
- L.D. Landau, E.M Lifszyc, Teoria pola, PWN, 2011 L.D. Landau, E.M Lifszyc, Fizyka statystyczna część 1, PWN, 2011 [3]
- L.D. Landau, E.M Lifszyc, Teoria Sprężystości, PWN, 2011 [4]
- L.D. Landau, E.M Lifszyc, Hydrodynamika, PWN, 2011 [5]
- L.D. Landau, E.M Lifszyc, Elektrodynamika ośrodków ciągłych, PWN, 2011 [6]

SUBJECT SUPERVISOR(NAME AND SURNAME, E-MAIL ADDRESS)

prof. dr hab. Antoni C. Mituś, Antoni.mitus@pwr.edu.pl