DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

SUPERVISOR/TEAM/ DECLARING/CONDUCTING COURSE: Prof. dr hab. Marcin

Mierzejewski

DEPARTMENT: Faculty of Basic Technical Problems W11

SCIENTIFIC DISCIPLINE: Physical Sciences

COURSE CARD

Course name in Polish: Teoria ciała stałego

Course name in English: Theoretical solid state physics

Course language English

University-wide general course type*:

The course is intended for all PhD students: YES / NO

1) BASIC COURSE

2) SPECIALIST COURSE

3) SEMINAR

4) HUMANISTIC COURSE

5) LANGUAGE

Subject code: NFQ100239W

* delete as applicable

	Lecture	Foreign language course	Seminar	Mixed forms
Number of hours of organized classes in university (ZZU)	30			
Grading	Exam	Exam	Oral presentation	Exam, inspection, evaluation classes
Number of ECTS points	0			

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of mathematical analysis and linear algebra
- 2. Basic knowledge of quantum mechanics
- 3. Basic knowledge of statistical physics
- 4. Ability of reading scientific literature in English

\

COURSE OBJECTIVES

- C1 Students learn the basic concepts and methods of theoretical solid state physics
- C2 Students learn the main open problems in the theoretical solid state physics

$\begin{array}{c} \textbf{DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND} \\ \textbf{TECHNOLOGY} \end{array}$

PROGRAM CONTENTS

	Number of hours	
Lec1	Introduction: Basic formalism for quantum many-body dystems	4
Lec2	Selected tight-binding models (Heisenberg, Ising, Hubbard, t-J) and construction of the matrix elements of selected Hamiltonians	3
Lec3	Selected representations of the spin operators via fermionic and bosonic operators	3
Lec4	Quasiparticles: magnons in ferromagnet	3
Lec5	Susceptibilities and the linear response theory	3
Lec6	Basic properties of the thermodynamic Green functions	3
Lec7	Electron-phonon interaction	2
Lec8	Lec8 Superconductivity	
Lec9	Lec9 Superfluidity	
Lec10	Peierls instability and charge-density waves	2
	Total hours:	30

TEACHING TOOLS USED				
N1. Lecture and discussion				

ACHIEVED SUBJECT LEARNING OUTCOMES				
Type of learning outcome	Code of learning outcome	Assessment of learning outcome		
Knowledge	P8U_WG	Students learn selected advanced topics of the solid state physics, learn the modern techniques and are able to judge on the validity and importance of the contemporary research		
Knowledge				
Skills				
Skills				
Social competence				
Social competence				
•••				

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

Józef Spałek, "Wstęp do fizyki fazy skondensowanej", PWN

SECONDARY LITERATURE:

Gerald D. Mahan., "Many-particle physics", Springer

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Marcin Mierzejewski, marcin.mierzejewski@pwr.edu.pl