DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY SUPERVISOR/TEAM/ DECLARING/CONDUCTING COURSE: Piotr Dobryszycki **DEPARTMENT:** Chemical Department **SCIENTIFIC DISCIPLINE:** Chemical Sciences #### **COURSE CARD** **Course name in Polish:** Metody Badań Biochemicznych Course name in English: **Methods in Biochemistry** Course language: Polish **University-wide general course type*:** The course is intended for all PhD students: YES / NO 1) BASIC COURSE 2) SPECIALIST COURSE 3) SEMINAR 4) HUMANISTIC COURSE 5) LANGUAGE Subject code: NCQ100108W * delete as applicable | | Lecture | Foreign
language
course | Seminar | Mixed forms | |--|---------|-------------------------------|---------|-------------| | Number of hours of organized classes in university (ZZU) | 30 | | | | | Grading | Exam | | | | | Number of ECTS points | 0 | | | | #### PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES Fundamental knowledge in biochemistry and biophysics \ ### **COURSE OBJECTIVES** - C1 Methods in biochemistry; biospectroscopy methods in the structure-function relationships of proteins and nucleic acids - C2 Theoretical bases of modern biochemical methods. Each lecture describes different method. - C3 Chosen examples of the technique application for the resolving of biological problems - C4 Reading of Methods section of the papers which applies biophysical methods for the analysis protein structure-function. | PROGRAMME CONTENT | | | | |-------------------|--|-----------------|--| | | Form of classes - lecture | Number of hours | | | Lec 1 | Introduction. Spectroscopy – definitions – absorption, emission, fluorescence, phosphorescence phenomena. UV-VIS spectroscopy of proteins and nucleic acids. | 2 | | | Lec 2 | Spectrofluorometry - polarization, steady-state methods; dynamic | 2 | | # DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY | | measurements – excited state lifetime. Fluorescence probes. | | |--------|--|----| | | Fluorescence quantum yield determination. | | | Lec 3 | Fluorescence spectroscopy – energy transfer (FRET); Foerster theory. | 2 | | Lec 4 | Theoretical aspects of the optical activity. Circular dichroism spectroscopy (ORD, CD, MCD). Determination of protein's secondary structure. | 2 | | Lec 5 | Fluorescence microscopy; nanoscopes – STORM, STED, PALM | 2 | | Lec 6 | Intrinsically Disordered Proteins (IDP) – methods of structure analysis | 2 | | Lec 7 | Ultracentrifugation for the structural studies of biomolecules | 2 | | Lec 8 | Protein knots – methods of structure analysis | 2 | | Lec 9 | Protein folding – methods of analysis | 2 | | Lec 10 | Surface plasmon resonance (SPR) – for the biomolecules interactions studies | 2 | | Lec 11 | Light-scattering methods (dynamic light-scattering, SAXS, SANS) | 2 | | Lec 12 | Single molecule spectroscopy – confocal microscopy. smFRET (single molecule FRET), fluorescence correlation spestroscopy (FCS) | 2 | | Lec13 | Atomic force microscopy (AFM), molecular tweezers in the protein folding studies | 2 | | Lec 14 | Biosensors, quantum dots, molecular beacons. | 2 | | Lec 15 | Examination | 2 | | | Total hours | 30 | | | | | ACHIEVED SUBJECT LEARNING OUTCOMES | |--------------------------|--------------------------|---|---| | Type of learning outcome | Code of learning outcome | Student knows and understands: | Method of evaluation: | | Knowledge | P8U_W | - the world's scientific and
creative heritage and its
implications for practice | - student competently quotes other authors in articles published
and prepared for publication in peer-reviewed scientific journals,
peer-reviewed materials from international scientific conferences,
and in book editions preceding the preparation of a doctoral
dissertation | | Knowledge | P8S_WG | - to such an extent that it is possible to revise existing paradigms – world heritage, including theoretical foundations, general issues and selected specific issues – specific to a scientific or artistic discipline - the main trends in the development of the scientific or artistic disciplines covered in the curricula | - student has a sound knowledge of basic subjects such as chemistry and biology chemistry - has an advanced knowledge fundamental to a field relevant to his/her research, including the most advanced methods of research and verification of results achieved in biochemistry and biophysics - has advanced knowledge of directional subjects in biotechnology - has knowledge at an advanced level of chemistry and subject matter relevant to the field of biotechnology, including the most recent research findings and scientific achievements | - research methodology ## DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY | | | - the rules for the
dissemination of scientific
results, including in open
access mode | | |--------|-------------------------|---|---| | | Code of the descriptive | Student is able to: | The method of evaluation: | | | component | | | | SKILLS | P8U_U | - analyse and creatively
synthesise scientific and
creative achievements in
order to identify and solve
research, innovation and
creative problems; create
new elements of this
achievements | is able to classify scientific publishers, including scientific journals, and scientific achievements according to accepted rules for: journals included in international databases Scopus and Web of Science impact factor (if), quoting, Hirsch index, have knowledge of current specification of active scientific journals in Scopus and Web of Science databases and their associated disciplines, as defined in the new classification of fields and disciplines | ### PRIMARY AND SECONDARY LITERATURE ### **PRIMARY LITERATURE:** - 1. Spectroscopy for the Biological Sciences Gordon G. Hammes; Wiley Interscience, 2005. - 2. Methods in Biochemistry (continous edition) ### **SECONDARY LITERATURE:** - 1. Chosen papers from scientific journals with the application examples of biochemical methods - 2. Principles of Fluorescence Spectroscopy Joseph Lakowicz, 3rd ed., Springer ### SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) prof. dr hab. inż. Piotr Dobryszycki piotr.dobryszycki@pwr.edu.pl