DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

3SUPERVISOR/TEAM/ DECLARING/CONDUCTING COURSE: Robert Góra DEPARTMENT K17W03D10

COURSE CARD

Course name in Polish: Teoretyczne metody badania fotochemii i fotofizyki układów molekularnych

Course name in English: Theoretical methods for studies of photochemistry and photophysics of molecular systems

Course language Polish / English*

Specialized courses for PhD students receiving education in discipline:* interdisciplinary course in the field of several disciplines: theoretical chemistry and physics Subject code: NCQ100206C

* delete as applicable

	Lecture	Foreign language course	Seminar	Mixed forms
Number of hours of organized classes in university (ZZU)		-	-	30
Grading		-	-	Report
Number of ECTS points				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. General chemistry and physics
- 2. Linear algebra and mathematical analysis
- 3. Basics of quantum mechanics

COURSE OBJECTIVES

C1. To acquaint students with modern methods of theoretical description of the electronic structure of atoms and molecules and to acquire the ability to apply these methods to determine the electronic structure and properties of molecular systems.

C2. Acquiring the ability to apply methods of theoretical chemistry to prediction and interpretation of selected spectral properties of molecular systems, including one- and two-quantum absorption spectra, emission spectra and non-adiabatic radiationless processes (transfer of excitation energy, internal conversion and inter-system transitions).

C3. Acquiring knowledge about the practical applications of spectroscopic techniques and photochemical and photophysical processes in technology and various branches of the economy and their significance for society.

C4. Individual work on the assigned project.

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

PROGRAM CONTENTS

	Form of classes – mixed forms (mix)	Number of hours
Mix1	Work organization in a computer lab and a computing center.	2
	Discussing the principles of health and safety at work. Distribution of	
	accounts and basic information about available operating systems.	
Mix2	Elements of the LINUX system I. Basic information about the operating	2
	system. Selected BASH shell commands.	
Mix3	Elements of the LINUX system II. Support for selected text editors.	2
	Simple BASH shell scripts.	
Mix4	Calculations of the electronic structure in the Hückel model for	2
	selected molecules. Eigenvalue problem in matrix form. Diagonalization	
	of the Hamiltonian and interpretation of eigenvalues spectra and	
	eigenvectors.	
Mix5	Representation of the structure of molecular systems. Orthogonal	2
	coordinates and internal coordinates on the example of Z-matrix.	
Mix6	Selected electronic structure calculation packages. Preparation of batch	2
	files. Calculations of the electronic structure of atoms using the restricted	
	and unrestricted Hartree-Fock method (HF). Structure of output files and	
	interpretation of the results of calculations.	
Mix7	Optimization of equilibrium geometry of molecules and analysis of	2
	normal-mode vibrations. Discussion of gradient geometry optimization	
	algorithms. Calculations of the harmonic frequencies spectrum. Analysis	
	of normal coordinates. Prediction and interpretation of infrared spectra.	
Mix8	Molecular orbital theory. Determination of potential energy curves for	2
	diatomic molecules in the HF method. Determination and interpretation of	
	molecular orbital and Walsh diagrams.	
Mix9	Configuration interaction method. Calculation of electronic states'	2
	spectra using the configuration interaction method with single (CIS) and	
	double excitations (CISD). Size-extensivity and size-consistency of the CI	
	method. Project I. Calculations of the electronic states spectra and their	
	interpretation for selected polyatomic molecules.	
Mix10	Accuracy of computational chemistry methods. Selection of the basis	2
	functions. Comparison of the accuracy of selected ab initio methods and	
	density functional theory methods. Validation of electronic structure	
	calculation methods.	
Mix11	Prediction and interpretation of absorption and fluorescence spectra	2
	in the UV-vis range. Interpretation of the character of electronically	
	excited states. Natural transition orbitals. Exploration of the potential	
	energy surfaces in electronically excited states.	
Mix12	Project II. Determination of the fine structure of absorption and	2
	fluorescence spectra within the linear coupling model in selected systems.	
Mix13	Search and characteristics of intersection seams of electronic states	2
	and their minima. Theoretical methods of locating minimum energy	
	intersections of electronic states. Conical intersections and intersystem	
	crossings. Determination of transient absorption spectra.	
Mix14	Project III. Determination of nonradiative deactivation channels in model	2
	systems.	
Mix15	Presentations of the results of projects I-III	2
	Total hours	30

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

TEACHING TOOLS USED

N1. Lecture at the blackboard

N2. Multimedia presentation

N3. Implementation of tasks / projects in the computer lab

N4. Personal computers / resources of the computing center / specialized software

ACHIEVED SUBJECT LEARNING OUTCOMES					
Type of learning outcome	Code of learning outcome	Assessment of learning outcome			
Skills	P8S_UW	report			
Skills	P8S_UO	report			
Social competence	P8S_KO	presentation			
Social competence P8S_KR		presentation			

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] R. W. Góra, teaching materials for the interdisciplinary course: "Theoretical methods for studies of photochemistry and photophysics of molecular systems", 2019
- [2] L. Piela, "Ideas of Quantum Chemistry" 3rd Edition, Elsevier, 2019
- [3] K. Pigoń, Z. Ruziewicz, Chemia Fizyczna (cz. 2), PWN, Warszawa, 2005.
- [4] D. O. Hayward, "Quantum Mechanics for Chemists", RSC, 2002

SECONDARY LITERATURE:

- [1] Engel, T., Reid, P., Quantum Chemistry and Spectroscopy, 3rd ed. ed. Pearson, Boston, 2013.
- [2] Olivucci, M. (Ed.), Computational Photochemistry, 1st ed., Theoretical and computational chemistry. Elsevier, Amsterdam; Boston, 2005.
- [3] May, V., Kühn, O., Charge and Energy Transfer Dynamics in Molecular Systems, 3rd ed. Wiley-VCH Verlag GmbH & Co. KGaA, 2011.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Robert W. Góra, robert.gora@pwr.edu.pl

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY