DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

SUPERVISOR/TEAM/ DECLARING/CONDUCTING COURSE: Wojciech Puła DEPARTMENT: Civil Engineering Department SCIENTIFIC DISCIPLINE: Civil Engineering and Transport

COURSE CARD

Course name in Polish: Metody probabilistyczne w inżynierii Course name in English: Probabilistic methods in engineering Course language: <u>English</u> University-wide general course type*: The course is intended for all PhD students: YES / NO 1) BASIC COURSE 2) SPECIALIST COURSE 3) SEMINAR 4) HUMANISTIC COURSE 5) LANGUAGE

Subject code: ILQ100024W

* delete as applicable

	Lecture	Foreign language course	Seminar	Mixed forms
Number of hours of organized classes in university (ZZU)	30	-	-	-
Grading	Exam	-	-	-
Number of ECTS points	0	-	-	-

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. A basic course in soil mechanics and foundation engineering

- 2. A basic course in probability and statistics
- 3. A course in calculus

COURSE OBJECTIVES

C1. To enable PhD students to use probabilistic methods within their PhD theses. C2. To demonstrate students the rules of probability based design

PROGRAM CONTENTS

١

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

	Number of hours	
Lec1	General comments on uncertainty in geotechnical analyses. Sources and types of uncertainty in geomechanical properties.	1
Lec2	Basic discrete probability theory.	1
Lec3	Some basic concepts of probability measures theory.	2
Lec4	Random variables and probability distributions, expected values, variance, moments of higher order. Random vectors, stochastic independence, covariance/correlation Common discrete and continuous distributions.	2
Lec5	Convergence of probability distributions. Limit theorems	1
Lec6	Stochastic processes and random fields	4
Lec7	Probabilistic modelling of soil properties. Estimation problems. Theory and examples	2
Lec8	Structural reliability methods and reliability assessments in geomechanics	3
Lec9	Reliability oriented simulation techniques. Random fields Simulation.	2
Lec9	Advanced reliability evaluations. Bearing capacity of shallow foundations.	2
Lec9	Advanced reliability evaluation. Response surface method and its application to foundation settlement problem	2
Lec10	Stochastic finite element method and the random element method (RFEM). An overview.	2
Lec11	Applications of RFEM to various geomechanical problems.	2
Lec12	Reliability based design. General rules and examples.	1
Lec13	Calibration of characteristic and design values in conjunction of rules given by Eurocodes	3
	Total hours:	30

TEACHING TOOLS USED

- N1. Classical lecture
- N2. Multimedial presentations
- N3. Discussions of problems.

ACHIEVED SUBJECT LEARNING OUTCOMES				
Type of learning outcome	Code of learning outcome	Assessment of learning outcome		
Knowledge	P8S_WG	has knowledge at an advanced level of a basic nature for a field related to the area of scientific research, including the latest methods of research and verification of achieved results		
Knowledge	P8S_W	Understanding the basic methods of structural reliability methods.		
Knowledge	P8S_WK	A knowledge in reliability based design		

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

Skills	P8U_U	An elementary skill in probabilistic modelling
Skills	P8S_UK	An elementary skill in reliability evaluations
Skills	P8S_UO	A skill in characteristic and design evaluation
Social competence		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] FENTON G.A., GRIFFITHS D.V. (2008), *Risk assessment in geotechnical engineering*. John Wiley & Sons, Hoboken, N.J.
- [2] EUROCODE 7 AND RELIABILITY-BASED DESIGN. IN: RELIABILITY BASED DESIGN IN GEOTECHNICAL ENGINEERING, TAYLOR AND FRANCIS, LONDON–NEW YORK,
- [3] BAECHER G.B., CHRISTIAN J.T. (2003), RELIABILITY AND STATISTICS IN GEOTECHNICAL
- [4] ENGINEERING. J. WILEY & SONS, CHICHESTER.
- [5] FISZ M. (1980), PROBABILITY THEORY AND MATHEMATICAL statistics. Krieger Publ. Co.

SECONDARY LITERATURE:

- [1] DITLEVSEN O., MADSEN H.O. (1996), STRUCTURAL RELIABILITY METHODS. JOHN WILEY & SONS, CHICHESTER.
- [2] PROBABILISTIC METHODS IN GEOTECHNICAL ENGINEERING. ED. BY D. V. GRIFFITHS,
- [3] GORDON A. FENTON. WIEN; NEW YORK: SPRINGER, COP. 2007. S. 127-145. ISBN: 978-3-211-73365-3.
- [4] MELCHERS R.E. (2018), STRUCTURAL RELIABILITY. ANALYSIS AND PREDICTION. 3RD EDITION, JOHN WILEY & SONS.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. of WUST, Wojciech Puła, PhD, Eng., wojciech.pula@pwr.edu.pl