DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

SUPERVISOR/TEAM/ DECLARING/CONDUCTING COURSE: dr hab. inż. Adam

Kasperski, prof. uczelni

DEPARTMENT: Department of IT and Management W8

SCIENTIFIC DISCIPLINE: Technical information and telecommunications

COURSE CARD

Course name in Polish: Programowanie Liniowe **Course name in English:** Linear Programming

Course language: English

The course is intended for all PhD students: YES / NO

1) BASIC COURSE

2) SPECIALIST COURSE

3) SEMINAR

4) HUMANISTIC COURSE

5) LANGUAGE

Subject code: ITQ100076W

* delete as applicable

	Lecture		
Number of hours of organized	20		
classes in university (ZZU)	30		
Grading	Crediting with		
Grading	grade		
Number of ECTS points	0		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Linear algebra
- 2. Elements of logic
- 3. Basic skills in computer programming

\

COURSE OBJECTIVES

- C1. Showing various applications of linear programming.
- C2. Presenting various methods of building linear programming models.
- C3. Presenting basic algorithms used in linear programming.

PROGRAM CONTENTS

Form of classes – lecture (Lec)		Number of hours
Lec1	Lec1 Introduction to linear programming	
Lec2 Applications of linear programming (model building)		2

Page 1 of 3

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

Lec3	Applications of linear programming (model building)	2
Lec4	Theory of linear programming	2
Lec5	The simplex algorithm	2
Lec6	Duality and sensitivity analysis	2
Lec7	Theory of linear integer programming 2	
Lec8	Branch and bound and cutting plane algorithms 2	
Lec9	Network flows	2
Lec10	Network simplex algorithm	2
Lec11	Solving large-scale models (decomposition algorithms) 2	
Lec12	From linear programming to exact and approximation algorithms 2	
Lec13	Robust linear programming 2	
Lec14	Complexity of linear programming 2	
Lec15	Written test	2
	Total hours:	30

TEACHING TOOLS USED	
N1. Traditional method, presentation	

ACHIEVED SUBJECT LEARNING OUTCOMES					
Type of learning outcome	Code of learning outcome	Assessment of learning outcome			
Knowledge	P8S_WG	Written test			
Skills	P8S_UW	Written test			

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] M.S. Bazaraa, J. J. Jarvis, H.D. Sherali. Linear Programming and Network Flows. Wiley
- [2] R. Ahuja, T. Magnanti, J. Orlin. Network Flows. Theory, Algorithms and Applications. Prentice Hall 1993
- [3] C. Papadimitriou, K. Steiglitz. Combinatorial Optimization. Dover 1998.

SECONDARY LITERATURE:

- [1] A. Shrijver. Theory of Linear and Integer Programming. Wiley 1986
- [2] B. Kolman. R. E. Beck. Elementary Linear Programming with Applications. Elsevier Science & Technology Books 1995

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Adam Kasperski, adam.kasperski@pwr.edu.pl

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY