DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

SUPERVISOR/TEAM/ DECLARING/CONDUCTING COURSE: Lucjan Jacak DEPARTMENT: Faculty of Basic Technical Problems W11 SCIENTIFIC DISCIPLINE: Physical Sciences

COURSE CARD

Course name in Polish: Informatyka i kryptografia kwantowa Course name in English: Quantum Information Processing and Quantum Cryptography Course language <u>Polish</u> / English* University-wide general course type*: The course is intended for all PhD students: YES / NO 1) BASIC COURSE 2) SPECIALIST COURSE 3) SEMINAR 4) HUMANISTIC COURSE 5) LANGUAGE

Subject code: NFQ100055W

* delete as applicable

	Lecture	Foreign language course	Seminar	Mixed forms
Number of hours of organized classes in university (ZZU)	30			
Grading	Exam	Exam	Oral presentation	Exam, inspection, evaluation classes
Number of ECTS points	0			

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Quantum mechanics (elementary)

2. Geometrical and wave optics, electrodynamics (elementary)

COURSE OBJECTIVES

C1 Familiarizing of PhD students with main ideas of quantum information processing C2 Familiarizing of PhD students with novel technical solutions (towards quantum computer and quantum cryptography)

	Form of classes – lecture	Number of hours
Lec 1	Fundamental properties of classical and quantum information	2
Lec 2	Von Neumann measurement, Żurek super-selection	2
Lec 3	Theorems no-cloning, no-deleting, no-broadcasting	2
Lec 4	Tensor product, quantum entanglement, Bell inequalities	2

PROGRAMME CONTENT

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

Lec 5	Density matrix for mixed state	2
Lec 6	Schmidt representation, number of Schmidt	
Lec 7	Qubit geometry – Bloch sphere	2
Lec 8	Unitary evolution on the Bloch sphere	2
Lec 9	Phase and amplitude decoherence	2
Lec 10	Control of qubit, Rabi oscillations	2
Lec 11	Single-qubit quantum logic gates	2
Lec 12	2 Double-qubit logic gates, universal double-qubit gate	
Lcc 13	Algorithms and quantum protocols, teleportation and seperdense coding	2
Lec 14	QKD protocols BB84 and E91, introduction to quantum cryptography	2
Lec 15	Decoherence of orbital and spin degree of freedom in quantum dots – obstacles on the way for universal quantum computer	2
	Total hours	30

	Form of classes - class	Number of hours
Total hours		

	Form of classes - laboratory	Number of hours
Total hours		

Form of classes - project		Number of hours
Proj 1		
Proj 2		
Proj 3		
	Total hours	

		Number of hours
Sem 1		
Sem 2		
Sem 3		
Sem 4		
	Total hours	

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

TEACHING TOOLS USED

N1. Standard lectures

N2. Additional consultations for students

N3 Specially addressed written materials – text-book

N4 Computer laboratory

N5 Demonstration of quantum cryptography, NLTK Clavis II, Quelle

ACHIEVED SUBJECT LEARNING OUTCOMES			
Type of learning outcome	Code of learning outcome	Assessment of learning outcome	
Knowledge	P8U_K	Discussion during the exam	
Skills	P8S_KKK	Discusiion during the exam	
Social competence	P8S_KO	Discusion during lessons	

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

M. A. Nielsen and I. L. Chuang, *Quantum Computation and Quantum Information*, Cambridge UP, Cambridge, 2000.
D. Bouwmeester, A. Ekert, and A. Zeilinger, *The Physics of Quantum Information*, Springer, Berlin, 2000.
W. Jacak, J. Krasnyj, R. Gonczarek, L. Jacak, *Decoherence of orbital and spin degrees of freedom in quantum dots*, Oficyna Wydawnicza PWR, Wrocław 2010 (in Polish)
J. Preskill, *Quantum information and computation*, Lecture Notes for Phys., http://www.theory.caltech.edu/~preskill/ph229, 1998.
W. Jacak, L. Jacak, and W. Donderowicz, *Introduction to Quantum Information and Communication*, Printpap, Łodź, 2011.
J. Jacak, L. Jacak *INTRODUCTION TO QUANTUM INFORMATION PROCESSING (SUPPLEMENTARY MATERIALS*) e-script IP WUT 2010

SECONDARY LITERATURE:

 [1] current literature in journals in the field of QKD and QIP
[3] W. K. Wootters and W. H. Żurek, *A single quantum cannot be cloned*, Nature **299**, p. 802, 1982.
[4] J. Preskill, *Topological quantum computation.*, Lecture Notes for Phys.

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

219, California Inst. Tech., 2005

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Prof. Dr hab. Witold Jacak, <u>witold.aleksander.jacak@pwr.edu.pl</u> Prof. Lucjan Jacak, <u>lucjan.jacak@pwr.wroc.pl</u> Dr hab. Janusz Jacak, <u>janusz.jacak@pwr.edu.pl</u>