DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

SUPERVISOR/TEAM/ DECLARING/CONDUCTING COURSE: dr hab Jan Masajada, prof. ucz.

DEPARTMENT: Faculty of Basic Technical Problems W11 SCIENTIFIC DISCIPLINE: Physical Sciences

COURSE CARD

Course name in Polish: Promienie fale i fotony Course name in English: Rays waves and photons Course language Polish University-wide general course type*: The course is intended for all PhD students: YES / NO 1) BASIC COURSE 2) SPECIALIST COURSE 3) SEMINAR 4) HUMANISTIC COURSE 5) LANGUAGE

Subject code: NFQ100053W

* delete as applicable

	Lecture	Foreign language course	Seminar	Mixed forms
Number of hours of organized classes in university (ZZU)	30	-	-	-
Grading	Exam			
Number of ECTS points	0			

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Introductory course in phisics

- 2. Introductory course in mathematical analysis
- \

COURSE OBJECTIVES

- C1 acquire knowledge in the field of geometrical optics C2 acquire knowledge in the field of wave optics
- C3 acquire knowledge in the field of quantum optics

PROGRAM CONTENTS

Form of classes – lecture (Lec)		Number of hours
Lec1	Introduction to the course, fundamental problems in theoretical	2

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

	description of optical phenomenon	
Lec2	Introduction to the theory of vision; physical and philosophical issues.	2
Lec3	Fermat principle, geometrical optics, instruments	2
Lec 4	Caustics and limits of the ray theory	2
Lec 5	Huygens – Fresnel principle – introduction to wave theory	2
Lec 6	Diffraction in the far field regime	2
Lec 7	Diffraction in the near field regime	2
Lec 8	Wave theory of image formation	2
Lec 9	Classical and synthetic holography 2	
Lec 10	Coherence theory.	2
Lec 11	Superresolution micorscopy	
Lec 12	2 Special and general theory of relativity 2	
Lec 13	Introduction to quantum mechanic	2
Lec 14	The physics of photon	2
Lec 15	ØQuantum entanglement2	
	Total hours:	30

TEACHING TOOLS USED

- N1. Lecture with multimedia presentation
- N2. Literature prepared by author available via internet N3. Individual study and preparation for the exam

ACHIEVED SUBJECT LEARNING OUTCOMES					
Type of learning outcome	Code of learning outcome	Assessment of learning outcome			
Knowledge	P8U_W	Exam			
Skills	P8U_UW	Exam			
Skills	P8S_UU	Exam			
Social competence	P8S_KK	Exam			
Social competence	P8S_KR	Exam			

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Materiały do wykładów

- [2] K. Gniadek "Optyczne przetwarzanie informacji", PWN 1992
- [3] W. T. Cathey, Optyczne przetwarzanie informacji i holografia, PWN 1978
- [4] R. K. Luneburg, "Matematyczna teoria optyki", PWN, 1993
- [5] E. Hecht Optyka, PWN, 2013

SECONDARY LITERATURE:

[1] Artykuły z czasopism specjalistycznych

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS) Jan Masajada, jan.masajada@pwr.edu.pl