DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

SUPERVISOR DECLARING/CONDUCTING COURSE: PAWEŁ KRUPSKI DEPARTMENT OF MATHEMATICS SCIENTIFIC DISCIPLINE: MATHEMATICS

COURSE CARD

Course name in Polish: Topologia przestrzeni euklidesowych Course name in English: Topology of Euclidean spaces Course language: Polish or English The course is intended for all PhD students: YES SPECIALIST COURSE

Subject code: MAQ100278W

* delete as applicable

	Lecture		
Number of hours of organized classes in university (ZZU)	30		
Grading	Exam		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basic metric topology

- 2. General topology
- \

COURSE OBJECTIVES

- C1 Simplexes, polyhedra, simplicial approximations and some applications in topology.
- C2 Homotopies and covering maps.
- C3 Theorems on sphere separations.
- C4 Invariance theorems.

C5 Fundamental group.

PROGRAM CONTENTS

Form of classes: Lectures and problem solving classes	Number of hours
Affine notions. Simplexes, barycentric subdivisions	3
Sperner's Lemma and Brouwer's Fixed Point Theorem	3
Homotopies. Borsuk's Homotopy Extension Theorem	3
Polyhedra. Simplicial Approximation Theorem	3
Extension theorem for mappings into spheres. Borsuk's Sphere Separation	2
Theorem	
Jordan-Brouwer Theorem. Theorem on interior point invariance and	2
applications	
Covering maps and spaces. Homotopy and path lifting.	2
Fundamental groups. Induced homomorphisms	2

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

Fundamental groups of of products.	2
Edge groups of polyhedral. Isomorphism with fundamental groups.	4
Algorithms for edge group calculations. Applications.	4
Total hours	30

TEACHING TOOLS USED

- N1. Lectures
- N2. Problem solving
- N3. Student presentations

ACHIEVED SUBJECT LEARNING OUTCOMES						
Type of learning outcome Gradings: F=student's activity, P=final grade	Code of learning outcome	Assessment of learning outcome				
F_1	P8S_UK	Student's activity during semester				
F ₂	P8S_WG	Final exam				
$P=1/2(F_1+F_2)$						

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] R. Engelking, K. Sieklucki, Wstęp do topologii. (Eng. edition: Topology. A Geometric approach)
- [2] J. Mioduszewski, Wykłady z topologii. Topologia przestrzeni euklidesowych.

SECONDARY LITERATURE:

J. van Mill, The Infinite-Dimensional Topology of Function Spaces.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Paweł Krupski, pawel.krupski@pwr.edu.pl