SUPERVISOR/TEAM/ DECLARING/CONDUCTING COURSE: Sebastian Koziołek

DEPARTMENT: Mechanical Department

SCIENTIFIC DISCIPLINE: Mechanical Engineering

COURSE CARD

Course name in Polish: Inżynieria wynalazczości Course name in English: Inventive Engineering

Course language english

The course is intended for all PhD students: YES / NO

- 1) basic course
- 2) specialist course
- 3) seminar
- 4) humanistic course
- 5) language
- 6) research skills

Code cours: MEQ100272W

	Lecture	Foreign Language Course	Seminar	Mixed forms Seminarium
Number of hours of organized classes in university (ZZU)				30
Grading				Presentation, report, activity
Number of ECTS points				0

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. The ability to design technical objects.
- 2. Ability to model CAD geometric parts and assemblies.
- 3. Ability to work in a team.

COURSE OBJECTIVES

- C1. Acquiring knowledge about the methods of designing inventions with high innovative potential using systematic and heuristic methods.
- C2. Acquisition of knowledge in the field of innovation assessment using objective methods.
- C3. Acquisition of knowledge in the area of building inventive teams and acquiring knowledge
- C4. Acquiring the skills of conceptual design with the use of prototyping

C5. Acquiring the ability to plan and conduct inventive workshops using heuristic and systematic methods such as TRIZ, Synectics, Design Thinking
C6. Acquiring skills in the field of commercialization of inventions and financing engineering

	Forma zajęć - mixed forms (mix)	Number of hours	
Mix1	Methods and tools of inventive design.	2	
IVIIXI	Lecture and Group Discussion	2	
Mix2	Overview of the methodology of Inventive Engineering.	2	
	Lecture and Group Discussion	2	
Mix3	Product and service innovation assessment.	2	
	Case study	Δ	
	Forecasting the development of products and services -	2	
Mix4	phase "For", phase "Model".		
	Lecture and Case Study		
	Forecasting the development of products and services -		
Mix5	phase "Analyzes", phase "Transfer".	2	
	Lecture and Case Study		
Mix6	Building inventive teams.	2	
MIXO	Lecture and Group Discussion with Interview	2	
Mix7	Heuristic and systematic knowledge acquisition	2	
IVIIX /	Lecture	2	
Mix8	Conceptual design using heuristic methods part ½	2	
IVIIXO	Lecture	2	
Mix9	Conceptual design using heuristic methods part 2/2	2	
WIIX9	Case study	2	
Mix10	Conceptual design using systematic methods part ½	2	
MIXIU	Lecture	2	
Mix11	Conceptual design using systematic methods part 2/2	2	
	Case study	۷.	
Mix12	Development of the design concept in terms of TEES		
	changes: technical and technological, economic,	2	
	environmental and social.	2	
	Seminar		
Mix13	Financing engineering - preparing a budget for the		
	development and commercialization of inventions	2	
	Lecture and Group Discussion		
Mix14	Financing engineering - raising funds for the development of		
	inventions and their commercialization	2	
	Lecture and Group Discussion		
Mix15	Evaluation classes	2	
	Suma godzin	30	

TEACHING TOOLS USED

- N1. traditional lecture with the use of transparencies and slides
- N2. problem discussion
- N3. case study
- N4. Team work of students under the supervision of the teacher
- N5. self study preparation for project class

ACHIEVED SUBJECT LEARNING OUTCOMES					
Type of learning outcome	Code of learning	Assessment of learning outcome			
	outcome				
Knowledge	P8S_WG	Report, participation in discussion			
Knowledge	P8S_WK	Report, participation in discussion			
Skills	P8S_UW	Report, participation in discussion			
Skills	P8S_UO	Report, participation in discussion			
Skills	P8S_UU	Report, participation in discussion			
Social competence	P8S_KO	Presentation, participation in discussion			
Social competence	P8S_KR	Presentation, participation in discussion			

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE

- [1] S. Koziołek. Inventiveness engineering. Methodology of designing innovative technical systems. Publishing House of Wrocław University of Science and Technology, first edition. Wrocław 2019.
- [2] T. Arciszewski, Inventive engineering: knowledge and skills for creative engineers. Taylor&Francis, 2016.
- [3] W. J. J. Gordon, Synectics. The development of creative capacity. New York: MacMillan publishing co., Inc., 1961.

SECONDARY LITERATURE

- [1] S. Koziołek i T. Arciszewski, "Syntectical building of representation space: a key to computing education", w Computing in Civil Engineering, 2011, ss. 1–15.
- [2] K. Haines-Gadd, Triz for Dummies. Wiley, 2016.