DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

SUPERVISOR DECLARING/CONDUCTING COURSE: Michał Przewoźniczek **DEPARTMENT:** Faculty Computer Science and Communication Technology **SCIENTIFIC DISCIPLINE:** Computer Science and Communication Technology

COURSE CARD

Course name in Polish: Nowoczesne Obliczenia Ewolucyjne Course name in English: Modern Evolutionary Computation Course language: english The course is intended for all PhD students: YES 2) SPECIALIST COURSE

Subject code: ITQ100275W

* delete as applicable

	Lecture	Foreign language course	Seminar	Mixed forms
Number of hours of organized classes in university (ZZU)				30
Grading	Exam	Exam	Oral presentation	evaluation classes

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Programming skill in C++, C#, or Java

2. The working knowledge and understanding of objective-oriented programming

\

COURSE OBJECTIVES

C1 Getting the knowledge on the main state-of-the-art trends in the field of Evolutionary Computation C2 Getting the ability to choose the appropriate optimizer for the optimization problem at hand C3 Getting the ability to implement chosen metaheuristics efficiently

C4 Getting the ability of critical analysis of the obtained results

PROGRAM CONTENTS

Form of classes	Number of hours
Organization classes. Basic optimization methods (lecture)	2
Continuous domains – problem features, optimizers features (lecture+lab)	2
Continuous domains – how to be effective? Automated optimizer step	2
choice (lecture+lab)	
Statistical analysis in continuous domains (lecture+lab)	4
Genetic Algorithms – basics, parameter influence (lecture+lab)	2
Gray-box optimization, problem-dedicated techniques (lecture+lab)	4

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

Population diversity – influence, classical and modern diversity	4
preservation techniques (lecture+lab)	
Problem decomposition (lecture+lab)	6
The basics of multi-objective optimization (lecture+lab)	2
Differential Evolution (lecture+lab)	2
Total hours	30

TEACHING TOOLS USED

N1. Multimedia presentations (for the lecture part of classes)

- N2. Documentation for the programming tasks (the laboratory part of classes)
- N3. The e-learning system for publishing the educational materials

ACHIEVED SUBJECT LEARNING OUTCOMES				
Type of learning outcome	Code of learning outcome	Assessment of learning outcome		
SzD_W3 the main trends in the development of the scientific or artistic disciplines covered in the curricula;	P8S_WG	The ability to use state-of-the-art evolutionary methods will be verified during the classes.		
SzD_W4 research methodology	P8S_WG	During the laboratory part of the classes, the participants will run their research. The quality of this research will be verified during the classes.		
SzD_U2 use knowledge from different fields of science or art to creatively identify, formulate and innovatively solve complex problems or perform research tasks ()	P8S_UW	During the classes, students will have to improve the already known evolutionary methods and their basic form. The quality of these modifications will be discussed during the classes.		
SzD_U5 initiate debates and participate in a scientific discourse;	P8S_UW	During the classes, students will discuss various subjects of Evolutionary Optimization. The activity during these classes will be verified and rated.		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Classes notes

[2] Arabas J. Wykłady z algorytmów ewolucyjnych

[3] Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs

[4] Michalewicz Z., Fogel D.B. How to Solve It: Modern Heuristics, WNT 2006

Goldberg D. Genetic algorithms in search, optimization, and machine learning

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

DOCTORAL SCHOOL OF WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

Michał Przewoźniczek (michal.przewozniczek@pwr.edu.pl)